Algorithms for Large Scale Convex and Cone Programming
大规模凸锥规划算法
基本信息
- 批准号:0900094
- 负责人:
- 金额:$ 24.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-07-01 至 2013-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Many problems in economics, natural sciences and engineering can be formulated in terms of convex optimization (CO) problems. The development of efficient algorithms for solving CO problems is then of paramount importance to handle these applications.In this project, the investigation of two important classes of algorithms for solving CO problems will be continued, namely: interior-point methods (also, called second-order methods) and first-order methods. The latter methods are particularly important for solving CO problems that, due to their huge size, cannot be solved by the first ones. More specifically, the purpose of this project is to investigate the following topics: 1) development of new algorithms and implementations for first-order smooth and non-smooth methods for cone programming (CP) problems; 2) development and implementation of first-order methods for geometric programming problems; 3) investigation of the complexity of first-order algorithms for solving CO problems based on the augmented Lagrangian penalty methods; 4) development of new insights on the geometry of the central path and examination of their impact into the polynomial complexity analysis of second-order methods for CP problems.If successful, this project will lead to the development of new software packages, which will increase and improve the existing tools available to practitioners to handle CO problems originating from many areas of economics, natural sciences, and engineering. For example, geometric programming is a tool commonly used to model many circuit design problems. The development of fast algorithms for geometric programming will have strong impact in the development of higher performance computers, which are important to several applications (e.g., weather prediction).
经济学、自然科学和工程学中的许多问题都可以归结为凸优化问题。开发有效的算法求解CO问题,然后处理这些应用程序是至关重要的。在这个项目中,两个重要类的算法求解CO问题的调查将继续进行,即:邻点方法(也称为二阶方法)和一阶方法。后一种方法对于解决CO问题特别重要,由于其庞大的规模,无法通过第一种方法解决。更具体地说,本项目的目的是研究以下主题:1)锥规划(CP)问题的一阶光滑和非光滑方法的新算法和实现的发展; 2)几何规划问题的一阶方法的发展和实现; 3)研究了基于增广拉格朗日罚方法求解CO问题的一阶算法的复杂性; 4)发展关于中心路径几何的新见解,并检查其对CP问题二阶方法的多项式复杂性分析的影响。如果成功,该项目将导致开发新的软件包,这将增加和改善现有的工具,从业人员处理CO问题,起源于许多领域的经济学,自然科学和工程。例如,几何编程是一种常用于对许多电路设计问题建模的工具。几何规划的快速算法的发展将对更高性能计算机的发展产生强烈的影响,这对若干应用(例如,天气预报)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Renato D. C. Monteiro其他文献
A modified nearly exact method for solving low-rank trust region subproblem
- DOI:
10.1007/s10107-006-0025-0 - 发表时间:
2006-11-22 - 期刊:
- 影响因子:2.500
- 作者:
Zhaosong Lu;Renato D. C. Monteiro - 通讯作者:
Renato D. C. Monteiro
A single cut proximal bundle method for stochastic convex composite optimization
- DOI:
10.1007/s10107-023-02035-2 - 发表时间:
2023-12-11 - 期刊:
- 影响因子:2.500
- 作者:
Jiaming Liang;Vincent Guigues;Renato D. C. Monteiro - 通讯作者:
Renato D. C. Monteiro
Efficient Parameter-Free Restarted Accelerated Gradient Methods for Convex and Strongly Convex Optimization
- DOI:
10.1007/s10957-025-02713-5 - 发表时间:
2025-06-09 - 期刊:
- 影响因子:1.500
- 作者:
Arnesh Sujanani;Renato D. C. Monteiro - 通讯作者:
Renato D. C. Monteiro
Stochastic Dynamic Cutting Plane for Multistage Stochastic Convex Programs
- DOI:
10.1007/s10957-021-01842-x - 发表时间:
2021-03-25 - 期刊:
- 影响因子:1.500
- 作者:
Vincent Guigues;Renato D. C. Monteiro - 通讯作者:
Renato D. C. Monteiro
Interior path following primal-dual algorithms. part II: Convex quadratic programming
- DOI:
10.1007/bf01587076 - 发表时间:
1989-05-01 - 期刊:
- 影响因子:2.500
- 作者:
Renato D. C. Monteiro;Ilan Adler - 通讯作者:
Ilan Adler
Renato D. C. Monteiro的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Renato D. C. Monteiro', 18)}}的其他基金
Algorithms for Large-Scale Cone and Convex Programs, Saddle-Point Problems and Variational Inequalities
大规模锥凸规划、鞍点问题和变分不等式的算法
- 批准号:
1300221 - 财政年份:2013
- 资助金额:
$ 24.2万 - 项目类别:
Standard Grant
Cone programming: Theory, Implementation and Applications
圆锥规划:理论、实现和应用
- 批准号:
0430644 - 财政年份:2004
- 资助金额:
$ 24.2万 - 项目类别:
Continuing Grant
Collaborative Research: Theory and Implementation of Semidefinite Programming and its Applications to Combinatorial Optimization
协作研究:半定规划的理论与实现及其在组合优化中的应用
- 批准号:
0203113 - 财政年份:2002
- 资助金额:
$ 24.2万 - 项目类别:
Standard Grant
U.S.-Japan Cooperative Science: Algorithms for Linear Programs Over Symmetric Cones
美日合作科学:对称锥上的线性规划算法
- 批准号:
9910084 - 财政年份:2000
- 资助金额:
$ 24.2万 - 项目类别:
Standard Grant
Theory and Implementation of Algorithms for Semi-Definite and Cone Programming
半定锥规划算法的理论与实现
- 批准号:
9902010 - 财政年份:1999
- 资助金额:
$ 24.2万 - 项目类别:
Standard Grant
Interior Point Methods: Semidefinite and Nonlinear Programming
内点方法:半定和非线性规划
- 批准号:
9700448 - 财政年份:1997
- 资助金额:
$ 24.2万 - 项目类别:
Standard Grant
U.S.-Brazil Cooperative Research on Proximal Interior Point Methods
美国-巴西近内点法合作研究
- 批准号:
9600343 - 财政年份:1996
- 资助金额:
$ 24.2万 - 项目类别:
Standard Grant
Research Initiation: Sensitivity Analysis Approach in the Absence of an Optimal Basis and its Application to the Framework of Interior Point Methods
研究发起:无最优基础下的敏感性分析方法及其在内点法框架中的应用
- 批准号:
9496178 - 财政年份:1993
- 资助金额:
$ 24.2万 - 项目类别:
Continuing Grant
Research Initiation: Sensitivity Analysis Approach in the Absence of an Optimal Basis and its Application to the Framework of Interior Point Methods
研究发起:无最优基础下的敏感性分析方法及其在内点方法框架中的应用
- 批准号:
9109404 - 财政年份:1991
- 资助金额:
$ 24.2万 - 项目类别:
Continuing Grant
相似国自然基金
水稻穗粒数调控关键因子LARGE6的分子遗传网络解析
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
量子自旋液体中拓扑拟粒子的性质:量子蒙特卡罗和新的large-N理论
- 批准号:
- 批准年份:2020
- 资助金额:62 万元
- 项目类别:面上项目
甘蓝型油菜Large Grain基因调控粒重的分子机制研究
- 批准号:31972875
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
Large PB/PB小鼠 视网膜新生血管模型的研究
- 批准号:30971650
- 批准年份:2009
- 资助金额:8.0 万元
- 项目类别:面上项目
基因discs large在果蝇卵母细胞的后端定位及其体轴极性形成中的作用机制
- 批准号:30800648
- 批准年份:2008
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
LARGE基因对口腔癌细胞中α-DG糖基化及表达的分子调控
- 批准号:30772435
- 批准年份:2007
- 资助金额:29.0 万元
- 项目类别:面上项目
相似海外基金
CIF: Small: Theory and Algorithms for Efficient and Large-Scale Monte Carlo Tree Search
CIF:小型:高效大规模蒙特卡罗树搜索的理论和算法
- 批准号:
2327013 - 财政年份:2023
- 资助金额:
$ 24.2万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: New Theory, Algorithms and Applications for Large-Scale Bilevel Optimization
合作研究:CIF:小型:大规模双层优化的新理论、算法和应用
- 批准号:
2311274 - 财政年份:2023
- 资助金额:
$ 24.2万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: New Theory, Algorithms and Applications for Large-Scale Bilevel Optimization
合作研究:CIF:小型:大规模双层优化的新理论、算法和应用
- 批准号:
2311275 - 财政年份:2023
- 资助金额:
$ 24.2万 - 项目类别:
Standard Grant
NOVEL DECOMPOSITION ALGORITHMS FOR GUARANTEED GLOBAL OPTIMIZATION OF LARGE-SCALE NONCONVEX STOCHASTIC PROGRAMS
确保大规模非凸随机程序全局优化的新颖分解算法
- 批准号:
2232588 - 财政年份:2023
- 资助金额:
$ 24.2万 - 项目类别:
Standard Grant
OAC Core: High Performance Computing Algorithms and Software for large-scale Mass Spectrometry based Omics
OAC Core:基于大规模质谱组学的高性能计算算法和软件
- 批准号:
2312599 - 财政年份:2023
- 资助金额:
$ 24.2万 - 项目类别:
Standard Grant
Large-Scale Models and Algorithms in Diffeomorphic Shape and Image Registration
微分同胚形状和图像配准中的大规模模型和算法
- 批准号:
2309683 - 财政年份:2023
- 资助金额:
$ 24.2万 - 项目类别:
Standard Grant
AF: Small: RUI: Toward High-Performance Block Krylov Subspace Algorithms for Solving Large-Scale Linear Systems
AF:小:RUI:用于求解大规模线性系统的高性能块 Krylov 子空间算法
- 批准号:
2327619 - 财政年份:2023
- 资助金额:
$ 24.2万 - 项目类别:
Standard Grant
CAREER: Harnessing Interference with Deep Learning: Algorithms and Large-Scale Experiments
职业:利用深度学习的干扰:算法和大规模实验
- 批准号:
2239524 - 财政年份:2023
- 资助金额:
$ 24.2万 - 项目类别:
Continuing Grant
Collaborative Research: PPoSS: LARGE: Co-designing Hardware, Software, and Algorithms to Enable Extreme-Scale Machine Learning Systems
协作研究:PPoSS:大型:共同设计硬件、软件和算法以实现超大规模机器学习系统
- 批准号:
2348306 - 财政年份:2023
- 资助金额:
$ 24.2万 - 项目类别:
Continuing Grant
Optimization algorithms for large-scale bus and train unit scheduling
大规模公交列车编组调度优化算法
- 批准号:
567169-2021 - 财政年份:2022
- 资助金额:
$ 24.2万 - 项目类别:
Alliance Grants