Collaborative Research: Theory and Implementation of Semidefinite Programming and its Applications to Combinatorial Optimization
协作研究:半定规划的理论与实现及其在组合优化中的应用
基本信息
- 批准号:0203113
- 负责人:
- 金额:$ 25.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-06-15 至 2006-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
ABSTRACT0203113Monteiro, Renato GA Tech Res Corp -GITIn a semidefinite programming (SDP) problem, a linear function of a symmetric matrix variable X is minimized subject to linear equality constraints on X and the essential constraint that X be positive semidefinite. Many mathematical optimization problems can be cast as SDP problems including linear programs, convex quadratic problems with convex quadratic inequality constraints, matrix norm minimization problems, and a variety of maximum and minimum eigenvalue problems. In addition, SDP has many applications in combinatorial optimization, engineering, statistics, and robust optimization.Today, there are numerous algorithms and codes available for solving SDPs, and these methods can be loosely grouped into two classes: second-order interior-point (IP) methods and first-order nonlinear programming (NLP) methods. The choice of which class to use for a particular application is determined primarily byproblem size --- second-order IP methods are more efficient on small- to medium-scale problems while first-order NLP methods are better for large-scale problems.
在半定规划问题中,对称矩阵变量X的线性函数在X上的线性等式约束和X是半正定的基本约束下被最小化。 许多数学优化问题可以转化为SDP问题,包括线性规划、具有凸二次不等式约束的凸二次问题、矩阵范数最小化问题以及各种最大和最小特征值问题。此外,SDP在组合优化、工程、统计和鲁棒优化等领域也有广泛的应用。目前,有许多算法和代码可用于求解SDP,这些方法可以大致分为两类:二阶邻域点(IP)方法和一阶非线性规划(NLP)方法。选择哪一类用于特定的应用程序主要是由问题的大小-二阶IP方法是更有效的小到中等规模的问题,而一阶NLP方法是更好的大规模的问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Renato D. C. Monteiro其他文献
A modified nearly exact method for solving low-rank trust region subproblem
- DOI:
10.1007/s10107-006-0025-0 - 发表时间:
2006-11-22 - 期刊:
- 影响因子:2.500
- 作者:
Zhaosong Lu;Renato D. C. Monteiro - 通讯作者:
Renato D. C. Monteiro
A single cut proximal bundle method for stochastic convex composite optimization
- DOI:
10.1007/s10107-023-02035-2 - 发表时间:
2023-12-11 - 期刊:
- 影响因子:2.500
- 作者:
Jiaming Liang;Vincent Guigues;Renato D. C. Monteiro - 通讯作者:
Renato D. C. Monteiro
Efficient Parameter-Free Restarted Accelerated Gradient Methods for Convex and Strongly Convex Optimization
- DOI:
10.1007/s10957-025-02713-5 - 发表时间:
2025-06-09 - 期刊:
- 影响因子:1.500
- 作者:
Arnesh Sujanani;Renato D. C. Monteiro - 通讯作者:
Renato D. C. Monteiro
Stochastic Dynamic Cutting Plane for Multistage Stochastic Convex Programs
- DOI:
10.1007/s10957-021-01842-x - 发表时间:
2021-03-25 - 期刊:
- 影响因子:1.500
- 作者:
Vincent Guigues;Renato D. C. Monteiro - 通讯作者:
Renato D. C. Monteiro
Interior path following primal-dual algorithms. part II: Convex quadratic programming
- DOI:
10.1007/bf01587076 - 发表时间:
1989-05-01 - 期刊:
- 影响因子:2.500
- 作者:
Renato D. C. Monteiro;Ilan Adler - 通讯作者:
Ilan Adler
Renato D. C. Monteiro的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Renato D. C. Monteiro', 18)}}的其他基金
Algorithms for Large-Scale Cone and Convex Programs, Saddle-Point Problems and Variational Inequalities
大规模锥凸规划、鞍点问题和变分不等式的算法
- 批准号:
1300221 - 财政年份:2013
- 资助金额:
$ 25.5万 - 项目类别:
Standard Grant
Algorithms for Large Scale Convex and Cone Programming
大规模凸锥规划算法
- 批准号:
0900094 - 财政年份:2009
- 资助金额:
$ 25.5万 - 项目类别:
Standard Grant
Cone programming: Theory, Implementation and Applications
圆锥规划:理论、实现和应用
- 批准号:
0430644 - 财政年份:2004
- 资助金额:
$ 25.5万 - 项目类别:
Continuing Grant
U.S.-Japan Cooperative Science: Algorithms for Linear Programs Over Symmetric Cones
美日合作科学:对称锥上的线性规划算法
- 批准号:
9910084 - 财政年份:2000
- 资助金额:
$ 25.5万 - 项目类别:
Standard Grant
Theory and Implementation of Algorithms for Semi-Definite and Cone Programming
半定锥规划算法的理论与实现
- 批准号:
9902010 - 财政年份:1999
- 资助金额:
$ 25.5万 - 项目类别:
Standard Grant
Interior Point Methods: Semidefinite and Nonlinear Programming
内点方法:半定和非线性规划
- 批准号:
9700448 - 财政年份:1997
- 资助金额:
$ 25.5万 - 项目类别:
Standard Grant
U.S.-Brazil Cooperative Research on Proximal Interior Point Methods
美国-巴西近内点法合作研究
- 批准号:
9600343 - 财政年份:1996
- 资助金额:
$ 25.5万 - 项目类别:
Standard Grant
Research Initiation: Sensitivity Analysis Approach in the Absence of an Optimal Basis and its Application to the Framework of Interior Point Methods
研究发起:无最优基础下的敏感性分析方法及其在内点法框架中的应用
- 批准号:
9496178 - 财政年份:1993
- 资助金额:
$ 25.5万 - 项目类别:
Continuing Grant
Research Initiation: Sensitivity Analysis Approach in the Absence of an Optimal Basis and its Application to the Framework of Interior Point Methods
研究发起:无最优基础下的敏感性分析方法及其在内点方法框架中的应用
- 批准号:
9109404 - 财政年份:1991
- 资助金额:
$ 25.5万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Design and synthesis of hybrid anode materials made of chemically bonded carbon nanotube to copper: a concerted experiment/theory approach
合作研究:设计和合成由化学键合碳纳米管和铜制成的混合阳极材料:协调一致的实验/理论方法
- 批准号:
2334039 - 财政年份:2024
- 资助金额:
$ 25.5万 - 项目类别:
Continuing Grant
Collaborative Research: Design and synthesis of hybrid anode materials made of chemically bonded carbon nanotube to copper: a concerted experiment/theory approach
合作研究:设计和合成由化学键合碳纳米管和铜制成的混合阳极材料:协调一致的实验/理论方法
- 批准号:
2334040 - 财政年份:2024
- 资助金额:
$ 25.5万 - 项目类别:
Continuing Grant
Collaborative Research: Advances in the Theory and Practice of Non-Euclidean Statistics
合作研究:非欧几里得统计理论与实践的进展
- 批准号:
2311058 - 财政年份:2023
- 资助金额:
$ 25.5万 - 项目类别:
Continuing Grant
Collaborative Research: CIF: Small: Theory for Learning Lossless and Lossy Coding
协作研究:CIF:小型:学习无损和有损编码的理论
- 批准号:
2324396 - 财政年份:2023
- 资助金额:
$ 25.5万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: New Directions and Approaches in Discrepancy Theory
合作研究:AF:小:差异理论的新方向和方法
- 批准号:
2327010 - 财政年份:2023
- 资助金额:
$ 25.5万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: New Directions and Approaches in Discrepancy Theory
合作研究:AF:小:差异理论的新方向和方法
- 批准号:
2327011 - 财政年份:2023
- 资助金额:
$ 25.5万 - 项目类别:
Standard Grant
CPS: Medium: Collaborative Research: Developing Data-driven Robustness and Safety from Single Agent Settings to Stochastic Dynamic Teams: Theory and Applications
CPS:中:协作研究:从单代理设置到随机动态团队开发数据驱动的鲁棒性和安全性:理论与应用
- 批准号:
2240982 - 财政年份:2023
- 资助金额:
$ 25.5万 - 项目类别:
Standard Grant
Collaborative Research: Using Complex Systems Theory and Methods to Gauge the Gains and Persisting Challenges of Broadening Participation Initiatives
合作研究:利用复杂系统理论和方法来衡量扩大参与计划的收益和持续的挑战
- 批准号:
2301197 - 财政年份:2023
- 资助金额:
$ 25.5万 - 项目类别:
Standard Grant
Collaborative Research: Floer Theory and Topological Entropy
合作研究:弗洛尔理论和拓扑熵
- 批准号:
2304207 - 财政年份:2023
- 资助金额:
$ 25.5万 - 项目类别:
Standard Grant
Collaborative Research: Supramolecular Multi-Component Peptide Nanofibrils: Bridging Understanding at Atomic and Mesoscopic Scales with Structure and Theory
合作研究:超分子多组分肽纳米纤维:通过结构和理论在原子和介观尺度上架起理解桥梁
- 批准号:
2304852 - 财政年份:2023
- 资助金额:
$ 25.5万 - 项目类别:
Standard Grant