Scalable Parallel Computational Methods for Partial Differential Equations with Moving and Varying Boundaries

具有移动和变化边界的偏微分方程的可扩展并行计算方法

基本信息

  • 批准号:
    9902035
  • 负责人:
  • 金额:
    $ 33.02万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1999
  • 资助国家:
    美国
  • 起止时间:
    1999-09-01 至 2003-08-31
  • 项目状态:
    已结题

项目摘要

This project will investigate novel parallel numerical methods, relying on a special type of finite element meshes, called here LRLFH-meshes (Locally Refined Locally Fitted Hierarchical meshes), and on coupling of advanced multigrid methods with domain embedding/fictitious domains and domain decomposition techniques, for solving linear and nonlinear Partial Differential Equations with moving and varying boundaries. The efficient solution of such problems is very important in various scientific and industrial applications, e.g., particulate flows, optimal control of systems with moving parts, optimal shape design. In the case of problems with varying geometry, requiring the solution of a large number of finite element/finite volume systems of equations associated with varying meshes, finding the right balance between accuracy and algorithmic efficiency is very difficult, particularly on parallel platforms. Recent results indicate that highly efficient parallel methods can be designed for the above problems by coupling multigrid preconditioning with domain decomposition and fictitious/embedding domain techniques on meshes which are block structured or almost structured, respectively. The main objectives of this project are:To develop and investigate parallel generators for Locally Refined Locally Fitted Hierarchical meshes for complex two and three dimensional geometries.To develop and investigate scalable parallel iterative solution methods with preconditioning based on coupling advanced multigrid algorithms with fictitious (embedding) domain and domain decomposition techniques.To apply the mesh generators and iterative solution methods, to be developed, to the numerical simulation of flow problems with complex moving boundaries, e. g., particulate flows governed by the Navier-Stokes equations, and to optimal shape design problems on parallel platforms (clusters of workstations and IBM SP/2).The work will have impact on the simulation of various phenomena encountered in chemical, mechanical and aerospace engineering.
本项目将研究新的并行数值方法,依赖于一种特殊类型的有限元网格,这里称为LRLFH网格(局部精化局部拟合分层网格),并耦合先进的多重网格方法与域嵌入/虚拟域和区域分解技术,用于求解具有移动和变化边界的线性和非线性偏微分方程。这些问题的有效解决方案在各种科学和工业应用中是非常重要的,颗粒流,运动部件系统的最优控制,最优形状设计。在具有变化的几何形状的问题的情况下,需要与变化的网格相关联的方程的大量有限元/有限体积系统的解决方案,找到准确性和算法效率之间的正确平衡是非常困难的,特别是在并行平台上。最近的研究结果表明,高效的并行方法可以设计上述问题的耦合多重网格预处理与区域分解和虚拟/嵌入域技术的网格块结构或几乎结构,分别。本项目的主要目标是:开发和研究二维和三维复杂几何体的局部精化局部拟合层次网格的并行生成器;开发和研究基于虚拟(嵌入)区域和区域分解技术的耦合先进多重网格算法的可扩展并行迭代求解方法;将开发的网格生成器和迭代求解方法应用于复杂动边界流动问题的数值模拟,例如,流动问题的数值模拟。例如,在一个实施例中,粒子流的Navier-Stokes方程,并在并行平台(集群工作站和IBM SP/2)的最佳形状设计问题。工作将在化学,机械和航空航天工程中遇到的各种现象的模拟产生影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Roland Glowinski其他文献

Erratum to: A numerical approach to the exact boundary controllability of the wave equation (I) Dirichlet controls: Description of the numerical methods
Synthèse par optimalisation de filtres a ondes élastiques de surface
  • DOI:
    10.1007/bf02999822
  • 发表时间:
    1977-01-01
  • 期刊:
  • 影响因子:
    2.200
  • 作者:
    Agnès Guerard;Roland Glowinski;Michel Feldmann
  • 通讯作者:
    Michel Feldmann
On The Boolean Optimization Of Polynomial Functional Based on Numerical Methods for Differential Equations
  • DOI:
    https://arxiv.org/abs/1912.10221
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
  • 作者:
    Yi-Shuai Niu;Roland Glowinski
  • 通讯作者:
    Roland Glowinski
Qualitative properties and approximation of solutions of Bingham flows: On the stabilization for large time and the geometry of the support
International Journal of C 2004 Institute for Scientific Numerical Analysis and Modeling Computing and Information Numerical Methods for Non-smooth L Optimization : Applications to Free Surface Flows and Image Denoising
国际期刊 C 2004 科学数值分析和建模研究所 计算和信息 非光滑 L 优化的数值方法:自由表面流和图像去噪的应用
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Caboussat;Roland Glowinski;Victoria Pons
  • 通讯作者:
    Victoria Pons

Roland Glowinski的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Roland Glowinski', 18)}}的其他基金

Collaborative Research: Numerical Methods for Fully and Implicitly Nonlinear Equations
合作研究:完全隐式非线性方程的数值方法
  • 批准号:
    0913982
  • 财政年份:
    2009
  • 资助金额:
    $ 33.02万
  • 项目类别:
    Standard Grant
Collaborative Research: CMG: Predictability and Dynamics of Models of Quasigeostrophic Turbulence and Their Low-Dimensional Truncations
合作研究:CMG:准地转湍流及其低维截断模型的可预测性和动力学
  • 批准号:
    0417867
  • 财政年份:
    2004
  • 资助金额:
    $ 33.02万
  • 项目类别:
    Continuing Grant
Numerical Methods for Fully Nonlinear Elliptic Equations of the Monge-Ampere Type
Monge-Ampere型完全非线性椭圆方程的数值方法
  • 批准号:
    0412267
  • 财政年份:
    2004
  • 资助金额:
    $ 33.02万
  • 项目类别:
    Standard Grant
Numerical Simulation of Complex Incompressible Viscous Flow in Time Varying Geometries: Applications
时变几何形状中复杂不可压缩粘性流的数值模拟:应用
  • 批准号:
    0209066
  • 财政年份:
    2002
  • 资助金额:
    $ 33.02万
  • 项目类别:
    Continuing Grant
Computational Methods for the Direct Simulation of Particulate Flow of Newtonian and Non-Newtonian Incompressible Viscous Fluids
牛顿和非牛顿不可压缩粘性流体颗粒流直接模拟的计算方法
  • 批准号:
    9973318
  • 财政年份:
    1999
  • 资助金额:
    $ 33.02万
  • 项目类别:
    Standard Grant
Domain Decomposition Methods for Flow Problems and their Parallel Implementation
流问题的域分解方法及其并行实现
  • 批准号:
    8822522
  • 财政年份:
    1989
  • 资助金额:
    $ 33.02万
  • 项目类别:
    Continuing Grant
US-France Cooperative Research: Computational and AnalyticalMethods in Fluid Mechanics, Reservoir Engineering and Seismology
美法合作研究:流体力学、油藏工程和地震学的计算和分析方法
  • 批准号:
    8612680
  • 财政年份:
    1987
  • 资助金额:
    $ 33.02万
  • 项目类别:
    Standard Grant

相似国自然基金

强流低能加速器束流损失机理的Parallel PIC/MCC算法与实现
  • 批准号:
    11805229
  • 批准年份:
    2018
  • 资助金额:
    27.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: Ideas Lab: Discovery of Novel Functional RNA Classes by Computational Integration of Massively-Parallel RBP Binding and Structure Data
合作研究:创意实验室:通过大规模并行 RBP 结合和结构数据的计算集成发现新的功能性 RNA 类别
  • 批准号:
    2243706
  • 财政年份:
    2023
  • 资助金额:
    $ 33.02万
  • 项目类别:
    Standard Grant
Collaborative Research: Ideas Lab: Discovery of Novel Functional RNA Classes by Computational Integration of Massively-Parallel RBP Binding and Structure Data
合作研究:创意实验室:通过大规模并行 RBP 结合和结构数据的计算集成发现新的功能性 RNA 类别
  • 批准号:
    2243704
  • 财政年份:
    2023
  • 资助金额:
    $ 33.02万
  • 项目类别:
    Standard Grant
Collaborative Research: Ideas Lab: Discovery of Novel Functional RNA Classes by Computational Integration of Massively-Parallel RBP Binding and Structure Data
合作研究:创意实验室:通过大规模并行 RBP 结合和结构数据的计算集成发现新的功能性 RNA 类别
  • 批准号:
    2243703
  • 财政年份:
    2023
  • 资助金额:
    $ 33.02万
  • 项目类别:
    Standard Grant
Collaborative Research: Ideas Lab: Discovery of Novel Functional RNA Classes by Computational Integration of Massively-Parallel RBP Binding and Structure Data
合作研究:创意实验室:通过大规模并行 RBP 结合和结构数据的计算集成发现新的功能性 RNA 类别
  • 批准号:
    2243705
  • 财政年份:
    2023
  • 资助金额:
    $ 33.02万
  • 项目类别:
    Standard Grant
Massively parallel computational methods for combined-modes heat transfer with applications to concentrated solar power technologies
组合模式传热的大规模并行计算方法及其在聚光太阳能发电技术中的应用
  • 批准号:
    RGPIN-2016-04927
  • 财政年份:
    2021
  • 资助金额:
    $ 33.02万
  • 项目类别:
    Discovery Grants Program - Individual
Toward Easy Parallel Programming for Computational Fluid Dynamics
面向计算流体动力学的简单并行编程
  • 批准号:
    2438840
  • 财政年份:
    2020
  • 资助金额:
    $ 33.02万
  • 项目类别:
    Studentship
Massively parallel computational methods for combined-modes heat transfer with applications to concentrated solar power technologies
组合模式传热的大规模并行计算方法及其在聚光太阳能发电技术中的应用
  • 批准号:
    RGPIN-2016-04927
  • 财政年份:
    2020
  • 资助金额:
    $ 33.02万
  • 项目类别:
    Discovery Grants Program - Individual
Unification of computational statistics and measurement technology by massively parallel machine
大规模并行机统一计算统计和测量技术
  • 批准号:
    19H04125
  • 财政年份:
    2019
  • 资助金额:
    $ 33.02万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Massively parallel computational methods for combined-modes heat transfer with applications to concentrated solar power technologies
组合模式传热的大规模并行计算方法及其在聚光太阳能发电技术中的应用
  • 批准号:
    RGPIN-2016-04927
  • 财政年份:
    2019
  • 资助金额:
    $ 33.02万
  • 项目类别:
    Discovery Grants Program - Individual
CAREER: A Parallel and Efficient Computational Framework for Unified Volumetric Meshing in Large-Scale 3D/4D Anisotropy
职业生涯:大规模 3D/4D 各向异性中统一体积网格划分的并行高效计算框架
  • 批准号:
    1845962
  • 财政年份:
    2019
  • 资助金额:
    $ 33.02万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了