Collaborative Research: Numerical Methods for Fully and Implicitly Nonlinear Equations

合作研究:完全隐式非线性方程的数值方法

基本信息

  • 批准号:
    0913982
  • 负责人:
  • 金额:
    $ 17.79万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-09-15 至 2012-08-31
  • 项目状态:
    已结题

项目摘要

The main goal of this project is to further investigate the numerical solution of fully nonlinear elliptic equations such as Monge-Ampère?s, in order to extend previous work done with the support of NSF Grant DMS-0412267. The main findings of these previous investigations are that, after regularization of the data (which is not always necessary), well-chosen least-squares formulations in appropriate Hilbert spaces lead to robust solution methods able to compute classical solutions, or generalized ones if classical solutions do not exist. The objectives of the present project are: (i) To improve the performances of the iterative methods used to solve the least-squares problems. This will require the development of novel algorithms to solve the many (one per grid point) low dimensional nonlinear eigenvalue problems obtained from the decomposition of the least squares problems, since this results in a number of small but intricate constrained eigenvalue problems. (ii) To demonstrate the effectiveness of these new algorithms on a variety of test problems (Monge-Ampère, Pucci, Gaussian curvature, sigma-2, in dimension 2, 3, and even 4 for the Pucci problem, using parallelization). (iii) To determine whether the remarkable homogenization properties observed in two-dimensions for some of these fully nonlinear elliptic equations when a coefficient in the operator varies periodically or randomly in space persist in higher dimensions. (iv) To apply, ultimately, the above methodology (or close variant of it) to the solution of some implicitly nonlinear partial differential equations from non-smooth differential geometry that model folding phenomena.What motivates these investigations is the fact that fully nonlinear elliptic equations play an important role in areas as diverse as material sciences, nonlinear elasticity, fluid mechanics, atmospheric sciences, nonlinear elasticity, shape design in electrical and structural engineering (antennas, car shape,?), finance, applied and theoretical physics, differential geometry and others. The related mathematical problems have generated a large literature. In contrast these problems have the reputation to be difficult from a computational standpoint explaining why the computational and applied mathematicians have not made significant progress on their numerical solution. One of the goals of this project is to close the gap between the various communities concerned with fully nonlinear elliptic equations so that each of them will learn from the others, setting an example of interdisciplinary science. Such an effort will also benefit science and engineering professionals and students, via publications, dedicated web sites and post-graduate courses, lectures at conferences, and of course direct involvement for some graduate students. It will also stimulate the contributions of other scientists to these important areas. Since computational methods developed previously by the Principal Investigators and their associates are currently used in many areas of Science and Engineering, Academia and Industry, one can expect a similar endeavor for the results and products originating from this collaborative project.
该项目的主要目标是进一步研究全非线性椭圆方程的数值解,如monge - ampandrere ?5 .为了在NSF基金DMS-0412267的支持下扩展先前的工作。这些先前研究的主要发现是,在对数据进行正则化(这并不总是必要的)之后,在适当的希尔伯特空间中精心选择的最小二乘公式导致能够计算经典解的鲁棒解方法,或者如果经典解不存在则可以计算广义解。本项目的目标是:(i)改进用于解决最小二乘问题的迭代方法的性能。这将需要开发新的算法来解决从最小二乘问题分解中获得的许多(每个网格点一个)低维非线性特征值问题,因为这会导致许多小而复杂的约束特征值问题。(ii)为了证明这些新算法在各种测试问题上的有效性(monge - ampantere, Pucci,高斯曲率,sigma-2,在Pucci问题的2维,3维,甚至4维,使用并行化)。(iii)确定当算子中的系数在空间中周期性或随机变化时,在二维中观察到的一些完全非线性椭圆方程的显著均匀性是否在高维中持续存在。(iv)最终将上述方法(或其近似的变体)应用于求解一些来自模拟折叠现象的非光滑微分几何的隐式非线性偏微分方程。激发这些研究的是这样一个事实,即完全非线性椭圆方程在材料科学、非线性弹性、流体力学、大气科学、非线性弹性、电气和结构工程(天线、汽车形状)中的形状设计、金融、应用和理论物理、微分几何等领域发挥着重要作用。相关的数学问题已经产生了大量的文献。相反,从计算的角度来看,这些问题很难解释为什么计算和应用数学家在数值解上没有取得重大进展。该项目的目标之一是缩小与全非线性椭圆方程有关的各个社区之间的差距,以便每个社区都能相互学习,树立跨学科科学的榜样。通过出版物、专门的网站和研究生课程、会议演讲,当然还有一些研究生的直接参与,这样的努力也将使科学和工程专业人员和学生受益。它还将激励其他科学家对这些重要领域作出贡献。由于先前由主要研究者及其同事开发的计算方法目前用于科学和工程,学术界和工业的许多领域,人们可以期待来自该合作项目的结果和产品的类似努力。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Roland Glowinski其他文献

Erratum to: A numerical approach to the exact boundary controllability of the wave equation (I) Dirichlet controls: Description of the numerical methods
Synthèse par optimalisation de filtres a ondes élastiques de surface
  • DOI:
    10.1007/bf02999822
  • 发表时间:
    1977-01-01
  • 期刊:
  • 影响因子:
    2.200
  • 作者:
    Agnès Guerard;Roland Glowinski;Michel Feldmann
  • 通讯作者:
    Michel Feldmann
On The Boolean Optimization Of Polynomial Functional Based on Numerical Methods for Differential Equations
  • DOI:
    https://arxiv.org/abs/1912.10221
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
  • 作者:
    Yi-Shuai Niu;Roland Glowinski
  • 通讯作者:
    Roland Glowinski
Qualitative properties and approximation of solutions of Bingham flows: On the stabilization for large time and the geometry of the support
International Journal of C 2004 Institute for Scientific Numerical Analysis and Modeling Computing and Information Numerical Methods for Non-smooth L Optimization : Applications to Free Surface Flows and Image Denoising
国际期刊 C 2004 科学数值分析和建模研究所 计算和信息 非光滑 L 优化的数值方法:自由表面流和图像去噪的应用
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Caboussat;Roland Glowinski;Victoria Pons
  • 通讯作者:
    Victoria Pons

Roland Glowinski的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Roland Glowinski', 18)}}的其他基金

Collaborative Research: CMG: Predictability and Dynamics of Models of Quasigeostrophic Turbulence and Their Low-Dimensional Truncations
合作研究:CMG:准地转湍流及其低维截断模型的可预测性和动力学
  • 批准号:
    0417867
  • 财政年份:
    2004
  • 资助金额:
    $ 17.79万
  • 项目类别:
    Continuing Grant
Numerical Methods for Fully Nonlinear Elliptic Equations of the Monge-Ampere Type
Monge-Ampere型完全非线性椭圆方程的数值方法
  • 批准号:
    0412267
  • 财政年份:
    2004
  • 资助金额:
    $ 17.79万
  • 项目类别:
    Standard Grant
Numerical Simulation of Complex Incompressible Viscous Flow in Time Varying Geometries: Applications
时变几何形状中复杂不可压缩粘性流的数值模拟:应用
  • 批准号:
    0209066
  • 财政年份:
    2002
  • 资助金额:
    $ 17.79万
  • 项目类别:
    Continuing Grant
Scalable Parallel Computational Methods for Partial Differential Equations with Moving and Varying Boundaries
具有移动和变化边界的偏微分方程的可扩展并行计算方法
  • 批准号:
    9902035
  • 财政年份:
    1999
  • 资助金额:
    $ 17.79万
  • 项目类别:
    Standard Grant
Computational Methods for the Direct Simulation of Particulate Flow of Newtonian and Non-Newtonian Incompressible Viscous Fluids
牛顿和非牛顿不可压缩粘性流体颗粒流直接模拟的计算方法
  • 批准号:
    9973318
  • 财政年份:
    1999
  • 资助金额:
    $ 17.79万
  • 项目类别:
    Standard Grant
Domain Decomposition Methods for Flow Problems and their Parallel Implementation
流问题的域分解方法及其并行实现
  • 批准号:
    8822522
  • 财政年份:
    1989
  • 资助金额:
    $ 17.79万
  • 项目类别:
    Continuing Grant
US-France Cooperative Research: Computational and AnalyticalMethods in Fluid Mechanics, Reservoir Engineering and Seismology
美法合作研究:流体力学、油藏工程和地震学的计算和分析方法
  • 批准号:
    8612680
  • 财政年份:
    1987
  • 资助金额:
    $ 17.79万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: WoU-MMA: Understanding the Physics and Electromagnetic Counterparts of Neutrino Blazars with Numerical Simulations
合作研究:WoU-MMA:通过数值模拟了解中微子耀变体的物理和电磁对应物
  • 批准号:
    2308090
  • 财政年份:
    2023
  • 资助金额:
    $ 17.79万
  • 项目类别:
    Standard Grant
Collaborative Research: Evaluating and parameterizing wind stress over ocean surface waves using integrated high-resolution imaging and numerical simulations
合作研究:利用集成高分辨率成像和数值模拟评估和参数化海洋表面波浪的风应力
  • 批准号:
    2319535
  • 财政年份:
    2023
  • 资助金额:
    $ 17.79万
  • 项目类别:
    Standard Grant
Collaborative Research: Effect of Vertical Accelerations on the Seismic Performance of Steel Building Components: An Experimental and Numerical Study
合作研究:垂直加速度对钢建筑构件抗震性能的影响:实验和数值研究
  • 批准号:
    2244696
  • 财政年份:
    2023
  • 资助金额:
    $ 17.79万
  • 项目类别:
    Standard Grant
Collaborative Research: Accurate and Structure-Preserving Numerical Schemes for Variable Temperature Phase Field Models and Efficient Solvers
合作研究:用于变温相场模型和高效求解器的精确且结构保持的数值方案
  • 批准号:
    2309547
  • 财政年份:
    2023
  • 资助金额:
    $ 17.79万
  • 项目类别:
    Standard Grant
eMB: Collaborative Research: Mechanistic models for seasonal avian migration: Analysis, numerical methods, and data analytics
eMB:协作研究:季节性鸟类迁徙的机制模型:分析、数值方法和数据分析
  • 批准号:
    2325195
  • 财政年份:
    2023
  • 资助金额:
    $ 17.79万
  • 项目类别:
    Standard Grant
Collaborative Research: Effective Numerical Schemes for Fundamental Problems Related to Incompressible Fluids
合作研究:与不可压缩流体相关的基本问题的有效数值方案
  • 批准号:
    2309748
  • 财政年份:
    2023
  • 资助金额:
    $ 17.79万
  • 项目类别:
    Standard Grant
Collaborative Research: Evaluating and parameterizing wind stress over ocean surface waves using integrated high-resolution imaging and numerical simulations
合作研究:利用集成高分辨率成像和数值模拟评估和参数化海洋表面波浪的风应力
  • 批准号:
    2319536
  • 财政年份:
    2023
  • 资助金额:
    $ 17.79万
  • 项目类别:
    Standard Grant
Collaborative Research: Probing internal gravity wave dynamics and dissipation using global observations and numerical simulations
合作研究:利用全球观测和数值模拟探测内部重力波动力学和耗散
  • 批准号:
    2319142
  • 财政年份:
    2023
  • 资助金额:
    $ 17.79万
  • 项目类别:
    Standard Grant
Collaborative Research: CAS-Climate: Risk Analysis for Extreme Climate Events by Combining Numerical and Statistical Extreme Value Models
合作研究:CAS-Climate:结合数值和统计极值模型进行极端气候事件风险分析
  • 批准号:
    2308680
  • 财政年份:
    2023
  • 资助金额:
    $ 17.79万
  • 项目类别:
    Continuing Grant
Collaborative Research: CAS-Climate: Risk Analysis for Extreme Climate Events by Combining Numerical and Statistical Extreme Value Models
合作研究:CAS-Climate:结合数值和统计极值模型进行极端气候事件风险分析
  • 批准号:
    2308679
  • 财政年份:
    2023
  • 资助金额:
    $ 17.79万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了