Numerical Methods for Fully Nonlinear Elliptic Equations of the Monge-Ampere Type
Monge-Ampere型完全非线性椭圆方程的数值方法
基本信息
- 批准号:0412267
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-07-15 至 2008-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The Monge-Ampere equation and related models have been for several decades topics of very active investigations by differential geometers and nonlinear partial differential equation specialists. However, if the Mathematics of Monge-Ampere equations and related models have motivated many investigators, and is at the origin of an abundant literature, the same can not be said of their Numerics; it is likely that the "full nonlinearity" of these equations is the dissuasive factor when considering their numerical solution. Taking these facts into account, the objectives of this project are: (i) Investigate computational methods for the solution of real Monge-Ampere equations, relying in particular on mixed finite element approximations. (ii) Investigate efficient iterative methods for the solution of the discrete problems derived from (i); on the basis of preliminary investigations one can expect fast Poisson solvers and properly preconditioned conjugate gradient algorithms to play an important role in the solution process. (iii) Use the resulting numerical methods to investigate the mathematical properties of Monge-Ampere type equations from the theory of fully nonlinear partial differential equations and from Differential Geometry, such as the Gaussian curvature equation. (iv)Apply the above methods to the numerical solution of problems from natural and engineering sciences involving Monge-Ampere related models (such problems take place in, e.g., Fluid Mechanics and Nonlinear Elasticity).The Monge-Ampere equation and related models play an important role in various areas of Mathematics, such as Differential Geometry, Partial Differential Equations and Calculus of Variations. Actually, this type of equations occur also in more applied areas such as Fluid Mechanics, Nonlinear Elasticity, Material Sciences, Mathematical Finance, and from that point of view their numerical solution is an issue of practical importance. Surprisingly, and despite the above mentioned importance of these equations, they have motivated very little numerical work, compared to less fundamental models; the complexity of these equations may be the cause of this paradoxical situation. The main objective of this computationally oriented project is the construction of user friendly efficient numerical methods for the solution of the Monge-Ampere equation and related mathematical problems. There will be a systematic effort to derive a modular methodology, relying as much as possible on "on the shelf" existing methods. These investigations should be beneficial to both the theoretical and applied sciences; indeed, they should: (i) Create bridges and foster cooperation between the computational/applied mathematics and the "more theoretical" mathematics communities. (ii) Involve students (and faculties) in highly interdisciplinary investigations. (iii) Motivate numerical analysts and computational scientists to look at an important interdisciplinary field, which has been clearly under-investigated. (iv)Lead to the teaching of courses broadening the knowledge basis of students and introducing them to a highly multidisciplinary field. (v) Foster international cooperation, since collaborations on these topics, with European scientists in particular, are taking place already. The results of these investigations will be made available via publications, conferences, and dedicated web sites.
Monge-Ampere方程及其相关模型几十年来一直是微分几何学家和非线性偏微分方程专家非常活跃的研究课题。然而,如果数学的蒙赫-安培方程和相关的模型已经激励了许多研究者,是一个丰富的文献的起源,同样不能说他们的数值;它很可能是“完全非线性”的这些方程是劝阻因素时,考虑他们的数值解。考虑到这些事实,本项目的目标是:(一)研究解决真实的Monge-Ampere方程的计算方法,特别是依靠混合有限元近似法。(ii)研究有效的迭代方法来解决来自(i)的离散问题;在初步研究的基础上,人们可以期望快速泊松求解器和适当的预处理共轭梯度算法在求解过程中发挥重要作用。(iii)使用由此产生的数值方法来研究完全非线性偏微分方程理论和微分几何中Monge-Ampere型方程的数学性质,例如高斯曲率方程。(iv)将上述方法应用于涉及Monge-Ampere相关模型的自然科学和工程科学问题的数值解(这样的问题发生在,例如,Monge-Ampere方程及其相关模型在数学的各个领域中发挥着重要作用,例如微分几何、偏微分方程和变分法。实际上,这种类型的方程也出现在更多的应用领域,如流体力学,非线性弹性,材料科学,数学金融,从这个角度来看,它们的数值解是一个具有实际意义的问题。令人惊讶的是,尽管上述这些方程的重要性,他们有动机很少的数值工作相比,不太基本的模型,这些方程的复杂性可能是这种矛盾的情况的原因。这个面向计算的项目的主要目标是构建用户友好的高效数值方法,用于解决Monge-Ampere方程和相关数学问题。将有系统地努力制定一种单元方法,尽可能依靠“现成”的现有方法。这些研究应该有益于理论科学和应用科学;事实上,它们应该:(i)在计算/应用数学和“更理论化”的数学界之间建立桥梁并促进合作。(ii)让学生(和教师)参与高度跨学科的调查。(iii)激励数值分析师和计算科学家关注一个重要的跨学科领域,这显然是研究不足的。(四)导致课程教学扩大学生的知识基础,并向他们介绍一个高度多学科的领域。(v)促进国际合作,因为在这些主题上的合作,特别是与欧洲科学家的合作已经在进行。这些调查的结果将通过出版物、会议和专门网站公布。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Roland Glowinski其他文献
Erratum to: A numerical approach to the exact boundary controllability of the wave equation (I) Dirichlet controls: Description of the numerical methods
- DOI:
10.1007/bf03167859 - 发表时间:
1990-06-01 - 期刊:
- 影响因子:1.100
- 作者:
Roland Glowinski;Chin-Hsien Li;Jacques-Louis Lions - 通讯作者:
Jacques-Louis Lions
Synthèse par optimalisation de filtres a ondes élastiques de surface
- DOI:
10.1007/bf02999822 - 发表时间:
1977-01-01 - 期刊:
- 影响因子:2.200
- 作者:
Agnès Guerard;Roland Glowinski;Michel Feldmann - 通讯作者:
Michel Feldmann
On The Boolean Optimization Of Polynomial Functional Based on Numerical Methods for Differential Equations
- DOI:
https://arxiv.org/abs/1912.10221 - 发表时间:
2019 - 期刊:
- 影响因子:
- 作者:
Yi-Shuai Niu;Roland Glowinski - 通讯作者:
Roland Glowinski
Qualitative properties and approximation of solutions of Bingham flows: On the stabilization for large time and the geometry of the support
- DOI:
10.5052/racsam.2010.13 - 发表时间:
2010-03-01 - 期刊:
- 影响因子:1.600
- 作者:
Jesús Ildefonso Díaz;Roland Glowinski;Giovanna GuIDoboni;Taebeom Kim - 通讯作者:
Taebeom Kim
International Journal of C 2004 Institute for Scientific Numerical Analysis and Modeling Computing and Information Numerical Methods for Non-smooth L Optimization : Applications to Free Surface Flows and Image Denoising
国际期刊 C 2004 科学数值分析和建模研究所 计算和信息 非光滑 L 优化的数值方法:自由表面流和图像去噪的应用
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
A. Caboussat;Roland Glowinski;Victoria Pons - 通讯作者:
Victoria Pons
Roland Glowinski的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Roland Glowinski', 18)}}的其他基金
Collaborative Research: Numerical Methods for Fully and Implicitly Nonlinear Equations
合作研究:完全隐式非线性方程的数值方法
- 批准号:
0913982 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: CMG: Predictability and Dynamics of Models of Quasigeostrophic Turbulence and Their Low-Dimensional Truncations
合作研究:CMG:准地转湍流及其低维截断模型的可预测性和动力学
- 批准号:
0417867 - 财政年份:2004
- 资助金额:
-- - 项目类别:
Continuing Grant
Numerical Simulation of Complex Incompressible Viscous Flow in Time Varying Geometries: Applications
时变几何形状中复杂不可压缩粘性流的数值模拟:应用
- 批准号:
0209066 - 财政年份:2002
- 资助金额:
-- - 项目类别:
Continuing Grant
Scalable Parallel Computational Methods for Partial Differential Equations with Moving and Varying Boundaries
具有移动和变化边界的偏微分方程的可扩展并行计算方法
- 批准号:
9902035 - 财政年份:1999
- 资助金额:
-- - 项目类别:
Standard Grant
Computational Methods for the Direct Simulation of Particulate Flow of Newtonian and Non-Newtonian Incompressible Viscous Fluids
牛顿和非牛顿不可压缩粘性流体颗粒流直接模拟的计算方法
- 批准号:
9973318 - 财政年份:1999
- 资助金额:
-- - 项目类别:
Standard Grant
Domain Decomposition Methods for Flow Problems and their Parallel Implementation
流问题的域分解方法及其并行实现
- 批准号:
8822522 - 财政年份:1989
- 资助金额:
-- - 项目类别:
Continuing Grant
US-France Cooperative Research: Computational and AnalyticalMethods in Fluid Mechanics, Reservoir Engineering and Seismology
美法合作研究:流体力学、油藏工程和地震学的计算和分析方法
- 批准号:
8612680 - 财政年份:1987
- 资助金额:
-- - 项目类别:
Standard Grant
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Novel numerical methods for fully nonlinear second order elliptic and parabolic Monge-Ampere and Hamilton-Jacobi-Bellman equations
全非线性二阶椭圆和抛物线 Monge-Ampere 和 Hamilton-Jacobi-Bellman 方程的新颖数值方法
- 批准号:
1620168 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Continuing Grant
Numerical methods for fully nonlinear and degenerate elliptic partial differential equations
全非线性和简并椭圆偏微分方程的数值方法
- 批准号:
411943-2011 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Accelerator Supplements
Fully adaptive and integrated numerical methods for the simulation and control of variable density multiphase flows governed by diffuse interface models.
用于模拟和控制由扩散界面模型控制的变密度多相流的完全自适应和集成数值方法。
- 批准号:
238092916 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Priority Programmes
Numerical methods for fully nonlinear and degenerate elliptic partial differential equations
全非线性和简并椭圆偏微分方程的数值方法
- 批准号:
411943-2011 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Accelerator Supplements
Numerical methods for fully nonlinear and degenerate elliptic partial differential equations
全非线性和简并椭圆偏微分方程的数值方法
- 批准号:
411943-2011 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Accelerator Supplements
Numerical Methods and Algorithms for Fully Nonlinear Second Order Evolution Equations with Applications
全非线性二阶演化方程的数值方法和算法及其应用
- 批准号:
1016173 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Continuing Grant
Numerical cubature for fully symmetric regions and adaptive methods for PDEs
完全对称区域的数值体积和偏微分方程的自适应方法
- 批准号:
2699-2007 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: Numerical Methods for Fully and Implicitly Nonlinear Equations
合作研究:完全隐式非线性方程的数值方法
- 批准号:
0913982 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Numerical Methods for Fully and Implicitly Nonlinear Equations
合作研究:完全隐式非线性方程的数值方法
- 批准号:
0914021 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Standard Grant
Numerical cubature for fully symmetric regions and adaptive methods for PDEs
完全对称区域的数值体积和偏微分方程的自适应方法
- 批准号:
2699-2007 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual