Computational Methods for the Direct Simulation of Particulate Flow of Newtonian and Non-Newtonian Incompressible Viscous Fluids

牛顿和非牛顿不可压缩粘性流体颗粒流直接模拟的计算方法

基本信息

  • 批准号:
    9973318
  • 负责人:
  • 金额:
    $ 17.1万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1999
  • 资助国家:
    美国
  • 起止时间:
    1999-08-01 至 2003-07-31
  • 项目状态:
    已结题

项目摘要

9973318The main goal of this project is to address the numerical solution of the Navier-Stokes equations modeling the flow of incompressible Newtonian and non-Newtonian viscous fluids and to combine the resulting methodology with appropriate domain embedding methods to investigate the simulation of particulate incompressible viscous fluid flows, e.g., flow of mixtures of incompressible fluids and solid particles moving, typically, under the effect of gravity and hydrodynamical forces. The numerical methodology will rely on the following basic basic ingredients:(1) Time discretization by operator splitting,(2) Treatment of advection by the method of characteristics or reduction to a second order wave-like equation,(3) Space approximation by finite elements,(4) Use of a distributed Lagrange multiplier/fictitious (embedding) domain methodology to localize the solid particles and force their rigid body motion.Typical non-Newtonian fluids to be investigated include Maxwell and Oldroyd B.Our goal in this project is to develop efficient methods, able to achieve the numerical simulation of three-dimensional flow of mixtures of incompressible viscous fluids with several hundreds to thousands of solid particles. Such large scale simulations have the characteristics of a Grand Challenge in Scientific Computing and success will rely on advanced computational methods implemented on powerful parallel computers. With these simulation tools the scientific community will be able to better understand the complicated mechanisms taking place for example in chemical reactors and in fractured oil reservoirs. Among the consequences of these investigations we can expect for example improved manufacturing techniques for rubber materials and pharmaceutical drugs, and also improved efficiency for drilling techniques used in oil Industry.
9973318该项目的主要目标是解决模拟不可压缩牛顿和非牛顿粘性流体流动的Navier-Stokes方程的数值解,并将所得方法与适当的域嵌入方法联合收割机相结合,以研究颗粒不可压缩粘性流体流动的模拟,例如,不可压缩流体和固体颗粒的混合物的流动,通常在重力和流体动力的作用下移动。 数字方法将依赖于以下基本要素:(1)通过算子分裂的时间离散化,(2)通过特征线法或简化为二阶波动方程的方法处理平流,(3)通过有限元的空间近似,(4)使用分布式拉格朗日乘子/虚拟(嵌入)域方法来定位固体颗粒并迫使其进行刚体运动。要研究的典型非牛顿流体包括麦克斯韦和Oldroyd B。我们在该项目中的目标是开发有效的方法,能够实现三个方面的数值模拟,三维流动的不可压缩的粘性流体的混合物与数百至数千固体颗粒。 这种大规模的模拟具有科学计算的巨大挑战的特点,成功将依赖于在强大的并行计算机上实现的先进计算方法。 有了这些模拟工具,科学界将能够更好地了解化学反应器和裂缝油藏中发生的复杂机制。 在这些研究的结果中,我们可以期待例如改进橡胶材料和药物的制造技术,以及提高石油工业中使用的钻井技术的效率。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Roland Glowinski其他文献

Erratum to: A numerical approach to the exact boundary controllability of the wave equation (I) Dirichlet controls: Description of the numerical methods
Synthèse par optimalisation de filtres a ondes élastiques de surface
  • DOI:
    10.1007/bf02999822
  • 发表时间:
    1977-01-01
  • 期刊:
  • 影响因子:
    2.200
  • 作者:
    Agnès Guerard;Roland Glowinski;Michel Feldmann
  • 通讯作者:
    Michel Feldmann
On The Boolean Optimization Of Polynomial Functional Based on Numerical Methods for Differential Equations
  • DOI:
    https://arxiv.org/abs/1912.10221
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
  • 作者:
    Yi-Shuai Niu;Roland Glowinski
  • 通讯作者:
    Roland Glowinski
Qualitative properties and approximation of solutions of Bingham flows: On the stabilization for large time and the geometry of the support
International Journal of C 2004 Institute for Scientific Numerical Analysis and Modeling Computing and Information Numerical Methods for Non-smooth L Optimization : Applications to Free Surface Flows and Image Denoising
国际期刊 C 2004 科学数值分析和建模研究所 计算和信息 非光滑 L 优化的数值方法:自由表面流和图像去噪的应用
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Caboussat;Roland Glowinski;Victoria Pons
  • 通讯作者:
    Victoria Pons

Roland Glowinski的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Roland Glowinski', 18)}}的其他基金

Collaborative Research: Numerical Methods for Fully and Implicitly Nonlinear Equations
合作研究:完全隐式非线性方程的数值方法
  • 批准号:
    0913982
  • 财政年份:
    2009
  • 资助金额:
    $ 17.1万
  • 项目类别:
    Standard Grant
Collaborative Research: CMG: Predictability and Dynamics of Models of Quasigeostrophic Turbulence and Their Low-Dimensional Truncations
合作研究:CMG:准地转湍流及其低维截断模型的可预测性和动力学
  • 批准号:
    0417867
  • 财政年份:
    2004
  • 资助金额:
    $ 17.1万
  • 项目类别:
    Continuing Grant
Numerical Methods for Fully Nonlinear Elliptic Equations of the Monge-Ampere Type
Monge-Ampere型完全非线性椭圆方程的数值方法
  • 批准号:
    0412267
  • 财政年份:
    2004
  • 资助金额:
    $ 17.1万
  • 项目类别:
    Standard Grant
Numerical Simulation of Complex Incompressible Viscous Flow in Time Varying Geometries: Applications
时变几何形状中复杂不可压缩粘性流的数值模拟:应用
  • 批准号:
    0209066
  • 财政年份:
    2002
  • 资助金额:
    $ 17.1万
  • 项目类别:
    Continuing Grant
Scalable Parallel Computational Methods for Partial Differential Equations with Moving and Varying Boundaries
具有移动和变化边界的偏微分方程的可扩展并行计算方法
  • 批准号:
    9902035
  • 财政年份:
    1999
  • 资助金额:
    $ 17.1万
  • 项目类别:
    Standard Grant
Domain Decomposition Methods for Flow Problems and their Parallel Implementation
流问题的域分解方法及其并行实现
  • 批准号:
    8822522
  • 财政年份:
    1989
  • 资助金额:
    $ 17.1万
  • 项目类别:
    Continuing Grant
US-France Cooperative Research: Computational and AnalyticalMethods in Fluid Mechanics, Reservoir Engineering and Seismology
美法合作研究:流体力学、油藏工程和地震学的计算和分析方法
  • 批准号:
    8612680
  • 财政年份:
    1987
  • 资助金额:
    $ 17.1万
  • 项目类别:
    Standard Grant

相似国自然基金

Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

LEAPS-MPS: Direct methods for data rich inverse problems
LEAPS-MPS:数据丰富的反问题的直接方法
  • 批准号:
    2213493
  • 财政年份:
    2022
  • 资助金额:
    $ 17.1万
  • 项目类别:
    Standard Grant
Comparing Direct and Indirect Methods for Cascade Screening in Familial Hypercholesterolemia (FH) and Long QT Syndrome (LQTS)
比较家族性高胆固醇血症 (FH) 和长 QT 综合征 (LQTS) 的直接和间接级联筛查方法
  • 批准号:
    10640932
  • 财政年份:
    2022
  • 资助金额:
    $ 17.1万
  • 项目类别:
Development and validation of novel optical methods for direct screening of taste receptor activation
直接筛选味觉受体激活的新型光学方法的开发和验证
  • 批准号:
    10593556
  • 财政年份:
    2022
  • 资助金额:
    $ 17.1万
  • 项目类别:
Machine learning models and data-driven methods to identify high-performing materials for direct air carbon capture and storage
机器学习模型和数据驱动方法,用于识别用于直接空气碳捕获和储存的高性能材料
  • 批准号:
    559697-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 17.1万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Comparing Direct and Indirect Methods for Cascade Screening in Familial Hypercholesterolemia (FH) and Long QT Syndrome (LQTS)
比较家族性高胆固醇血症 (FH) 和长 QT 综合征 (LQTS) 的直接和间接级联筛查方法
  • 批准号:
    10416668
  • 财政年份:
    2022
  • 资助金额:
    $ 17.1万
  • 项目类别:
Robust Integrated Assembly Design and Conformance Methods for Direct Digital Manufacturing
直接数字化制造的稳健集成装配设计和一致性方法
  • 批准号:
    RGPIN-2016-04689
  • 财政年份:
    2021
  • 资助金额:
    $ 17.1万
  • 项目类别:
    Discovery Grants Program - Individual
Establishment of cardiac pacemaker cells via direct reprogramming methods.
通过直接重编程方法建立心脏起搏细胞。
  • 批准号:
    21K19359
  • 财政年份:
    2021
  • 资助金额:
    $ 17.1万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Statistical methods for Direct Dark Matter Searches with LZ
LZ 直接暗物质搜索的统计方法
  • 批准号:
    2587450
  • 财政年份:
    2021
  • 资助金额:
    $ 17.1万
  • 项目类别:
    Studentship
High Order Methods for Direct Numerical Simulation of Incompressible Flows and Applications to Transition to Turbulence
不可压缩流直接数值模拟的高阶方法及其在湍流过渡中的应用
  • 批准号:
    RGPIN-2017-05320
  • 财政年份:
    2021
  • 资助金额:
    $ 17.1万
  • 项目类别:
    Discovery Grants Program - Individual
Machine learning models and data-driven methods to identify high-performing materials for direct air carbon capture and storage
机器学习模型和数据驱动方法,用于识别用于直接空气碳捕获和储存的高性能材料
  • 批准号:
    559697-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 17.1万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了