Saturation-Based Theorem Proving
基于饱和的定理证明
基本信息
- 批准号:9902031
- 负责人:
- 金额:$ 19.84万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1999
- 资助国家:美国
- 起止时间:1999-09-01 至 2003-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Two kinds of calculi are prevalent in automated theorem proving: saturation calculi and tableau and connection calculi. The latter support a goal-directed proof search, but the former are superior for logics with equality and similar domains. The most spectacular success for theorem proving to date---the solution of the Robbins problem was obtained with a saturation method.In saturation-based deduction, redundancy is a key concept. Formulas or inferences are redundant if they either do not contribute to any derivation of a contradiction, or else contribute in ways that allow for alternative, but simpler derivations. If all inferences from a set are redundant, the set is called saturated and is inconsistent only if there is an explicit contradiction. Saturation thus provides a basis for checking for inconsistency. An inference can always be rendered redundant by adding its conclusion to the current set of formulas, but techniques that avoid the generation of redundant formulas are indispensable for efficiency reasons. The objectives of this project are to develop further insights into this process and to advance theorem proving technology by focusing on three key technique---saturation, extension, and combination.Approximation refers to techniques such as unification and constraints that connect inferences at different levels, for variable-free and general formulas, respectively. The performance of saturation provers often depends on the subtle interaction between approximation and redundancy techniques. The extension of a formal language by new symbols has different uses in automated deduction, e.g., in congruence closure algorithms. This research aims at developing a theory of congruence closure as saturation-based decision procedures, to include not only standard congruence closure, but also extensions to richer theories and elimination methods for translating back to the original language.Saturation techniques have been implicitly used in computer algebra methods such as Buchberger's algorithm or Wu's method for proving theorems in geometry. The plan is to reformulate these methods in logical terms so as to integrate them in general-purpose provers and apply theorem proving techniques to obtain optimized or extended decision procedures.
在自动定理证明中流行的演算有两种:饱和演算和Tableau与连通演算。后者支持目标导向的证明搜索,但前者更适合于具有相等和相似领域的逻辑。到目前为止,定理证明中最引人注目的成功-Robbins问题的解是用饱和方法得到的。在基于饱和的推导中,冗余是一个关键概念。如果公式或推论对矛盾的任何派生没有贡献,或者以允许替代但更简单的派生的方式作出贡献,那么它们就是多余的。如果一个集合中的所有推论都是冗余的,则该集合称为饱和的,并且只有在存在明显的矛盾时才是不一致的。因此,饱和度为检查不一致性提供了基础。推理总是可以通过将其结论添加到当前公式集中而变得冗余,但出于效率的原因,避免生成冗余公式的技术是必不可少的。这个项目的目标是通过三个关键技术-饱和、扩展和组合--来进一步深入了解这一过程并推进定理证明技术。近似是指分别针对无变量公式和通用公式在不同层次上连接推理的统一和约束等技术。饱和度证明器的性能通常取决于近似和冗余技术之间的微妙交互作用。形式语言的新符号扩展在自动演绎中具有不同的用途,例如在同余闭包算法中。本研究旨在发展一种基于饱和的同余闭包理论,不仅包括标准的同余闭包,还包括对更丰富的理论和消去法的扩展,以将其转换回原始语言。饱和技术已被隐含地应用于计算机代数方法中,如Buchberger算法或Wu方法,用于证明几何中的定理。我们的计划是在逻辑上重新表述这些方法,以便将它们整合到通用证明器中,并应用定理证明技术来获得优化或扩展的决策程序。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Leo Bachmair其他文献
Leo Bachmair的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Leo Bachmair', 18)}}的其他基金
Enhancing the Power and Performance of Equational Systems
增强方程系统的功能和性能
- 批准号:
9510072 - 财政年份:1996
- 资助金额:
$ 19.84万 - 项目类别:
Standard Grant
Theoretical and Practical Issues in Automated Deduction
自动演绎的理论与实践问题
- 批准号:
8901322 - 财政年份:1989
- 资助金额:
$ 19.84万 - 项目类别:
Standard Grant
相似国自然基金
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
Incentive and governance schenism study of corporate green washing behavior in China: Based on an integiated view of econfiguration of environmental authority and decoupling logic
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
Exploring the Intrinsic Mechanisms of CEO Turnover and Market Reaction: An Explanation Based on Information Asymmetry
- 批准号:W2433169
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
A study on prototype flexible multifunctional graphene foam-based sensing grid (柔性多功能石墨烯泡沫传感网格原型研究)
- 批准号:
- 批准年份:2020
- 资助金额:20 万元
- 项目类别:
基于tag-based单细胞转录组测序解析造血干细胞发育的可变剪接
- 批准号:81900115
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
应用Agent-Based-Model研究围术期单剂量地塞米松对手术切口愈合的影响及机制
- 批准号:81771933
- 批准年份:2017
- 资助金额:50.0 万元
- 项目类别:面上项目
Reality-based Interaction用户界面模型和评估方法研究
- 批准号:61170182
- 批准年份:2011
- 资助金额:57.0 万元
- 项目类别:面上项目
Multistage,haplotype and functional tests-based FCAR 基因和IgA肾病相关关系研究
- 批准号:30771013
- 批准年份:2007
- 资助金额:30.0 万元
- 项目类别:面上项目
差异蛋白质组技术结合Array-based CGH 寻找骨肉瘤分子标志物
- 批准号:30470665
- 批准年份:2004
- 资助金额:8.0 万元
- 项目类别:面上项目
GaN-based稀磁半导体材料与自旋电子共振隧穿器件的研究
- 批准号:60376005
- 批准年份:2003
- 资助金额:20.0 万元
- 项目类别:面上项目
相似海外基金
Development of Nanoscale Viscoelasticity Measurement Method Based on Fluctuation-Dissipation Theorem
基于涨落耗散定理的纳米级粘弹性测量方法的发展
- 批准号:
23H02021 - 财政年份:2023
- 资助金额:
$ 19.84万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Non-linear fluctuating hydrodynamics based on fluctuation theorem
基于涨落定理的非线性脉动流体动力学
- 批准号:
19K21881 - 财政年份:2019
- 资助金额:
$ 19.84万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Study on sound space sensing based on an extended spatial sampling theorem
基于扩展空间采样定理的声音空间感知研究
- 批准号:
19K12026 - 财政年份:2019
- 资助金额:
$ 19.84万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Defect inspection method based on Cauchy's integral theorem using a circular differential coherent illumination
基于柯西积分定理的圆形差分相干照明缺陷检测方法
- 批准号:
18K04172 - 财政年份:2018
- 资助金额:
$ 19.84万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
An exploratory study toward a foundation of nonequilibrium statistical mechanics based on the fluctuation theorem
基于涨落定理的非平衡统计力学基础的探索性研究
- 批准号:
17K18737 - 财政年份:2017
- 资助金额:
$ 19.84万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Ground motion prediction method for arbitrary seismic source based on the reciprocity theorem of Green's function and ground motion record
基于格林函数互易定理和地震动记录的任意震源地震动预测方法
- 批准号:
25889032 - 财政年份:2013
- 资助金额:
$ 19.84万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Free boundary problems for flows with phase transitions consistent with thermodynamics based on maximal regularity theorem
基于最大正则定理的符合热力学的相变流动自由边界问题
- 批准号:
24340025 - 财政年份:2012
- 资助金额:
$ 19.84万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Unified viewpoint for hypergeometric functions and the pentagonal number theorem based on representation theory
基于表示论的超几何函数与五边形数定理的统一观点
- 批准号:
23654050 - 财政年份:2011
- 资助金额:
$ 19.84万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
An automatic unpacking method for computer virus effective in the virus filter based on Bayesian theorem
基于贝叶斯定理的有效病毒过滤的计算机病毒自动脱壳方法
- 批准号:
23500074 - 财政年份:2011
- 资助金额:
$ 19.84万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Developments of new linear solvers based on the induced dimension reduction theorem
基于诱导降维定理的新型线性求解器的开发
- 批准号:
22560067 - 财政年份:2010
- 资助金额:
$ 19.84万 - 项目类别:
Grant-in-Aid for Scientific Research (C)