Theory, Algorithms, and Applications of Signal Processing with the Sparseness Constraint

稀疏约束信号处理的理论、算法和应用

基本信息

  • 批准号:
    9902961
  • 负责人:
  • 金额:
    $ 29.92万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    1999
  • 资助国家:
    美国
  • 起止时间:
    1999-07-01 至 2003-06-30
  • 项目状态:
    已结题

项目摘要

CCR-9902961RaoTHEORY, ALGORITHMS, AND APPLICATIONS OF SIGNAL PROCESSING WITH THE SPARSENESS CONSTRAINT This research project will examine the theoretical and computational issues that arise in signal processing problems with the sparseness constraint in several important application domains. The research plan includes using majorization theory to develop and identify suitable diversity measures whose minimization leads to sparse solutions. Then, to minimize these measures, a new class of optimization algorithms will be developed, analyzed, and applied. Algorithms based on a factored representation for the gradient along with Affine Scaling Transformation (AST) based methods of interior point optimization theory will be the starting point of this work. To facilitate a more comprehensive understanding of the methods, and to develop methods robust to noise, a Bayesian framework will be employed. The important extension to the multiple measurement vector problem will be studied greatly expanding the range of applications. Learning algorithms will be developed to tune the required overcomplete dictionaries for specific application environments, thereby increasing their overall effectiveness. Theoretical and algorithmic development will be guided by the requirements of the applications. Particular attention will be given to the applications of signal representation and neuromagnetic imaging using Magnetoencephalography (MEG) (a potentially important new modality for the imaging of the brain).
CCR-9902961Rao 稀疏约束信号处理的理论、算法和应用 该研究项目将研究几个重要应用领域中稀疏约束信号处理问题中出现的理论和计算问题。研究计划包括使用多数化理论来开发和确定合适的多样性措施,其最小化会导致稀疏解决方案。然后,为了最大限度地减少这些措施,将开发、分析和应用一类新的优化算法。基于梯度分解表示的算法以及基于仿射缩放变换 (AST) 的内点优化理论方法将是这项工作的起点。为了促进对这些方法的更全面的理解,并开发对噪声具有鲁棒性的方法,将采用贝叶斯框架。将研究多测量向量问题的重要扩展,极大地扩展应用范围。将开发学习算法来调整特定应用环境所需的超完备词典,从而提高其整体有效性。理论和算法的开发将以应用的要求为指导。将特别关注使用脑磁图(MEG)(一种潜在重要的大脑成像新模式)进行信号表示和神经磁成像的应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bhaskar Rao其他文献

Comparison of performance of SWAT and SIMHYD models in simulation of stream flow from Hidkal dam catchment area of India under present and future scenarios
SWAT 和 SIMHYD 模型在当前和未来情景下模拟印度 Hidkal 大坝集水区水流的性能比较
  • DOI:
    10.53550/eec.2023.v29i03s.070
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bhaskar Rao;K. V. Rao;G. V. S. Reddy;M. Nemichandrappa;B. S. Polisgowdar;M. U. Bhanu
  • 通讯作者:
    M. U. Bhanu
Design and Development of Library Packages for Mixed-Signal Designs
混合信号设计库包的设计和开发
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    R. Rao;Dr.B.K.Madhavi;P.Vijaya;Bhaskar Rao
  • 通讯作者:
    Bhaskar Rao
Abstract #1172: Familial Versus Sporadic Encapsulated Follicular Variant of Papillary Thyroid Carcinoma: Need for More Aggressive Therapy?
  • DOI:
    10.1016/s1530-891x(20)44819-0
  • 发表时间:
    2016-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Pushpa Ravikumar;Thummala Kamala;Sri Srikanta;Lekshmi Narendran;Bhaskar Rao;Vasanthi Nath;Tejeswini Deepak;Lakshmi Reddy;Rina Bhargava;K. Sumathi;Babitha Thyagaraj;Priyanka Somasundar;Siddalingappa Chandraprabha;Kalleshwar Chandrika;B. Sunitha;Kasiviswanath Rajiv;Muralidhara Krishna;V. Reshma;Shivayogi Chitra; Preethi
  • 通讯作者:
    Preethi

Bhaskar Rao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bhaskar Rao', 18)}}的其他基金

NSF-AoF: Collaborative Research: CIF: Small: 6G Wireless Communications via Enhanced Channel Modeling and Estimation, Channel Morphing and Machine Learning for mmWave Bands
NSF-AoF:协作研究:CIF:小型:通过增强型毫米波信道建模和估计、信道变形和机器学习实现 6G 无线通信
  • 批准号:
    2225617
  • 财政年份:
    2022
  • 资助金额:
    $ 29.92万
  • 项目类别:
    Standard Grant
CIF: Small: Low Complexity Massive MIMO Systems: Synergistic use of Array Geometry, Modeling and Learning
CIF:小型:低复杂性大规模 MIMO 系统:阵列几何、建模和学习的协同使用
  • 批准号:
    2124929
  • 财政年份:
    2021
  • 资助金额:
    $ 29.92万
  • 项目类别:
    Standard Grant
CIF: SMALL: MASSIVE MIMO SYSTEMS: Novel Channel Modeling and Estimation Methods
CIF:小型:大规模 MIMO 系统:新颖的信道建模和估计方法
  • 批准号:
    1617365
  • 财政年份:
    2016
  • 资助金额:
    $ 29.92万
  • 项目类别:
    Standard Grant
CIF: Small: Novel (Channel Modeling, Feedback, and Cognitive) Approaches in Wireless Communications
CIF:小型:无线通信中的新颖(信道建模、反馈和认知)方法
  • 批准号:
    1115645
  • 财政年份:
    2011
  • 资助金额:
    $ 29.92万
  • 项目类别:
    Standard Grant
EAGER: A Multi-User Communication and Information Theoretic Approach to the Sparse Signal Recovery Problem
EAGER:解决稀疏信号恢复问题的多用户通信和信息理论方法
  • 批准号:
    1144258
  • 财政年份:
    2011
  • 资助金额:
    $ 29.92万
  • 项目类别:
    Standard Grant
Theory and Algorithms for Exploiting Sparsity in Signal Processing Applications
在信号处理应用中利用稀疏性的理论和算法
  • 批准号:
    0830612
  • 财政年份:
    2008
  • 资助金额:
    $ 29.92万
  • 项目类别:
    Continuing Grant
Novel Constrained Least Squares Algorithms With Application to MEG
新颖的约束最小二乘算法在 MEG 中的应用
  • 批准号:
    9220550
  • 财政年份:
    1993
  • 资助金额:
    $ 29.92万
  • 项目类别:
    Standard Grant
Tracking Analysis of Recursive Stochastic Algorithms
递归随机算法的跟踪分析
  • 批准号:
    8711984
  • 财政年份:
    1988
  • 资助金额:
    $ 29.92万
  • 项目类别:
    Continuing Grant

相似海外基金

CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 29.92万
  • 项目类别:
    Continuing Grant
Sensing Beyond Barriers via Non-Linearities: Theory, Algorithms and Applications
通过非线性传感超越障碍:理论、算法和应用
  • 批准号:
    MR/Y003926/1
  • 财政年份:
    2024
  • 资助金额:
    $ 29.92万
  • 项目类别:
    Fellowship
Algorithms, Theory, and Applications for Fiber Coating Systems
光纤涂层系统的算法、理论和应用
  • 批准号:
    2309774
  • 财政年份:
    2023
  • 资助金额:
    $ 29.92万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: New Theory, Algorithms and Applications for Large-Scale Bilevel Optimization
合作研究:CIF:小型:大规模双层优化的新理论、算法和应用
  • 批准号:
    2311274
  • 财政年份:
    2023
  • 资助金额:
    $ 29.92万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: New Theory, Algorithms and Applications for Large-Scale Bilevel Optimization
合作研究:CIF:小型:大规模双层优化的新理论、算法和应用
  • 批准号:
    2311275
  • 财政年份:
    2023
  • 资助金额:
    $ 29.92万
  • 项目类别:
    Standard Grant
CAREER: Learning Kernels in Operators from Data: Learning Theory, Scalable Algorithms and Applications
职业:从数据中学习算子的内核:学习理论、可扩展算法和应用
  • 批准号:
    2238486
  • 财政年份:
    2023
  • 资助金额:
    $ 29.92万
  • 项目类别:
    Continuing Grant
FET: Small: An Integrated Framework for the Optimal Control of Open Quantum Systems --- Theory, Quantum Algorithms, and Applications
FET:小型:开放量子系统最优控制的集成框架 --- 理论、量子算法和应用
  • 批准号:
    2312456
  • 财政年份:
    2023
  • 资助金额:
    $ 29.92万
  • 项目类别:
    Standard Grant
Statistical Inference from Multiscale Biological Data: theory, algorithms, applications
多尺度生物数据的统计推断:理论、算法、应用
  • 批准号:
    EP/Y037375/1
  • 财政年份:
    2023
  • 资助金额:
    $ 29.92万
  • 项目类别:
    Research Grant
RI: Small: Optimal Transport Generative Adversarial Networks: Theory, Algorithms, and Applications
RI:小型:最优传输生成对抗网络:理论、算法和应用
  • 批准号:
    2327113
  • 财政年份:
    2023
  • 资助金额:
    $ 29.92万
  • 项目类别:
    Continuing Grant
Collaborative Research: Nonconvex Models for Structured Sensing: Theory, Algorithms, and Applications
协作研究:结构化传感非凸模型:理论、算法和应用
  • 批准号:
    2208612
  • 财政年份:
    2022
  • 资助金额:
    $ 29.92万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了