Theory and Algorithms for Exploiting Sparsity in Signal Processing Applications
在信号处理应用中利用稀疏性的理论和算法
基本信息
- 批准号:0830612
- 负责人:
- 金额:$ 53.61万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-09-15 至 2012-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractThis research examines theoretical, algorithmic, and computational issues that arise in signal processing problems where there is a need to compute sparse solutions. There are numerous signal-processing applications where sparsity constraint on the solution vector naturally arises. Brain imaging techniques such as MEG and EEG, sparse communication channels with large delay spread, high-resolution spectral analysis, direction of arrival estimation and compressed sensing are a few examples. The generalization and extension of the sparse Bayesian learning (SBL) techniques considered in this research will broaden the application domain and provide a very powerful complement to the existing maximum a posteriori (MAP) methods commonly used and in some cases even surpass them.The investigators study extensions and generalizations of the sparse source recovery problem to greatly broaden the application domain. A key consideration in the work is developing a rigorous framework to deal with dependency in the sparsity framework. Motivated by applications with sparse but local structure, the research considers intra-vector dependency in the single measurement case, as well as intra-vector dependency as required in the multiple measurement contexts, among others. The research also includes the development of connections between multi-user communication theory and the sparse signal recovery problem to shed light on the stability with which sparse signal recovery is possible and to develop an understanding of the limits of suboptimal source recovery methods. To deal with non-stationary environments, the research develops on-line adaptive algorithms that exploit the inherent sparse structure of the application. The research also includes evaluation of the resulting algorithms in several important application domains.Level of Effort StatementAt the recommended level of support, the PI and co-PI will make every attempt to meet the original scope and level of effort of the project.
AbstractThis研究探讨了理论,算法和计算问题,出现在信号处理问题,有必要计算稀疏的解决方案。在许多信号处理应用中,解向量的稀疏性约束自然会出现。脑成像技术,如脑磁图和脑电图,具有大延迟扩展的稀疏通信信道,高分辨率频谱分析,到达方向估计和压缩传感是几个例子。稀疏贝叶斯学习(SBL)技术的推广和扩展将拓宽其应用领域,并对现有的最大后验概率(MAP)方法进行有力的补充,在某些情况下甚至超越MAP方法,研究稀疏源恢复问题的扩展和推广将大大拓宽其应用领域。工作中的一个关键考虑是开发一个严格的框架来处理稀疏框架中的依赖关系。受稀疏但局部结构的应用的启发,该研究考虑了单个测量情况下的向量内依赖性,以及多个测量环境中所需的向量内依赖性等。该研究还包括多用户通信理论和稀疏信号恢复问题之间的联系的发展,以阐明稀疏信号恢复的稳定性,并了解次优源恢复方法的局限性。为了处理非平稳环境,研究开发了在线自适应算法,利用固有的稀疏结构的应用程序。该研究还包括在几个重要的应用domines.Level的努力StatementAt建议的支持水平,PI和合作PI将尽一切努力,以满足原来的范围和水平的努力项目的算法的评估。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bhaskar Rao其他文献
Comparison of performance of SWAT and SIMHYD models in simulation of stream flow from Hidkal dam catchment area of India under present and future scenarios
SWAT 和 SIMHYD 模型在当前和未来情景下模拟印度 Hidkal 大坝集水区水流的性能比较
- DOI:
10.53550/eec.2023.v29i03s.070 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Bhaskar Rao;K. V. Rao;G. V. S. Reddy;M. Nemichandrappa;B. S. Polisgowdar;M. U. Bhanu - 通讯作者:
M. U. Bhanu
Design and Development of Library Packages for Mixed-Signal Designs
混合信号设计库包的设计和开发
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
R. Rao;Dr.B.K.Madhavi;P.Vijaya;Bhaskar Rao - 通讯作者:
Bhaskar Rao
Abstract #1172: Familial Versus Sporadic Encapsulated Follicular Variant of Papillary Thyroid Carcinoma: Need for More Aggressive Therapy?
- DOI:
10.1016/s1530-891x(20)44819-0 - 发表时间:
2016-05-01 - 期刊:
- 影响因子:
- 作者:
Pushpa Ravikumar;Thummala Kamala;Sri Srikanta;Lekshmi Narendran;Bhaskar Rao;Vasanthi Nath;Tejeswini Deepak;Lakshmi Reddy;Rina Bhargava;K. Sumathi;Babitha Thyagaraj;Priyanka Somasundar;Siddalingappa Chandraprabha;Kalleshwar Chandrika;B. Sunitha;Kasiviswanath Rajiv;Muralidhara Krishna;V. Reshma;Shivayogi Chitra; Preethi - 通讯作者:
Preethi
Bhaskar Rao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bhaskar Rao', 18)}}的其他基金
NSF-AoF: Collaborative Research: CIF: Small: 6G Wireless Communications via Enhanced Channel Modeling and Estimation, Channel Morphing and Machine Learning for mmWave Bands
NSF-AoF:协作研究:CIF:小型:通过增强型毫米波信道建模和估计、信道变形和机器学习实现 6G 无线通信
- 批准号:
2225617 - 财政年份:2022
- 资助金额:
$ 53.61万 - 项目类别:
Standard Grant
CIF: Small: Low Complexity Massive MIMO Systems: Synergistic use of Array Geometry, Modeling and Learning
CIF:小型:低复杂性大规模 MIMO 系统:阵列几何、建模和学习的协同使用
- 批准号:
2124929 - 财政年份:2021
- 资助金额:
$ 53.61万 - 项目类别:
Standard Grant
CIF: SMALL: MASSIVE MIMO SYSTEMS: Novel Channel Modeling and Estimation Methods
CIF:小型:大规模 MIMO 系统:新颖的信道建模和估计方法
- 批准号:
1617365 - 财政年份:2016
- 资助金额:
$ 53.61万 - 项目类别:
Standard Grant
CIF: Small: Novel (Channel Modeling, Feedback, and Cognitive) Approaches in Wireless Communications
CIF:小型:无线通信中的新颖(信道建模、反馈和认知)方法
- 批准号:
1115645 - 财政年份:2011
- 资助金额:
$ 53.61万 - 项目类别:
Standard Grant
EAGER: A Multi-User Communication and Information Theoretic Approach to the Sparse Signal Recovery Problem
EAGER:解决稀疏信号恢复问题的多用户通信和信息理论方法
- 批准号:
1144258 - 财政年份:2011
- 资助金额:
$ 53.61万 - 项目类别:
Standard Grant
Theory, Algorithms, and Applications of Signal Processing with the Sparseness Constraint
稀疏约束信号处理的理论、算法和应用
- 批准号:
9902961 - 财政年份:1999
- 资助金额:
$ 53.61万 - 项目类别:
Continuing Grant
Novel Constrained Least Squares Algorithms With Application to MEG
新颖的约束最小二乘算法在 MEG 中的应用
- 批准号:
9220550 - 财政年份:1993
- 资助金额:
$ 53.61万 - 项目类别:
Standard Grant
Tracking Analysis of Recursive Stochastic Algorithms
递归随机算法的跟踪分析
- 批准号:
8711984 - 财政年份:1988
- 资助金额:
$ 53.61万 - 项目类别:
Continuing Grant
相似海外基金
CAREER: Solving Estimation Problems of Networked Interacting Dynamical Systems Via Exploiting Low Dimensional Structures: Mathematical Foundations, Algorithms and Applications
职业:通过利用低维结构解决网络交互动力系统的估计问题:数学基础、算法和应用
- 批准号:
2340631 - 财政年份:2024
- 资助金额:
$ 53.61万 - 项目类别:
Continuing Grant
III: Small: Collaborative Research: Algorithms, systems, and theories for exploiting data dependencies in crowdsourcing
III:小型:协作研究:在众包中利用数据依赖性的算法、系统和理论
- 批准号:
2007941 - 财政年份:2020
- 资助金额:
$ 53.61万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Medium: Exploiting Synergies Between Machine-Learning Algorithms and Hardware Heterogeneity for High-Performance and Reliable Manycore Computing
合作研究:CNS Core:Medium:利用机器学习算法和硬件异构性之间的协同作用实现高性能和可靠的众核计算
- 批准号:
1955353 - 财政年份:2020
- 资助金额:
$ 53.61万 - 项目类别:
Continuing Grant
Collaborative Research: CNS Core: Medium: Exploiting Synergies Between Machine-Learning Algorithms and Hardware Heterogeneity for High-Performance and Reliable Manycore Computing
合作研究:CNS Core:Medium:利用机器学习算法和硬件异构性之间的协同作用实现高性能和可靠的众核计算
- 批准号:
1955196 - 财政年份:2020
- 资助金额:
$ 53.61万 - 项目类别:
Continuing Grant
III: Small: Collaborative Research: Algorithms, systems, and theories for exploiting data dependencies in crowdsourcing
III:小型:协作研究:在众包中利用数据依赖性的算法、系统和理论
- 批准号:
2008155 - 财政年份:2020
- 资助金额:
$ 53.61万 - 项目类别:
Standard Grant
CIF: Small: ESTRELLA: Exploiting Structure in Tensors for Representation, Estimation, and Limits of Learning Algorithms
CIF:小:ESTRELLA:利用张量结构进行表示、估计和学习算法的限制
- 批准号:
1910110 - 财政年份:2019
- 资助金额:
$ 53.61万 - 项目类别:
Standard Grant
AF: Small: Redundancy exploiting algorithms for high throughput genomics
AF:小:利用冗余算法实现高通量基因组学
- 批准号:
1619081 - 财政年份:2016
- 资助金额:
$ 53.61万 - 项目类别:
Standard Grant
Geometry and Algorithms for Exploiting Polyhedral Symmetries
利用多面体对称性的几何和算法
- 批准号:
263949937 - 财政年份:2015
- 资助金额:
$ 53.61万 - 项目类别:
Research Grants
Exploiting unconventional QR-algorithms for fast and accurate computations of roots of polynomials
利用非常规 QR 算法快速准确地计算多项式的根
- 批准号:
227388185 - 财政年份:2012
- 资助金额:
$ 53.61万 - 项目类别:
Research Fellowships
AF: Large: Collaborative Research: Exploiting Duality between Meta-Algorithms and Complexity
AF:大:协作研究:利用元算法和复杂性之间的二元性
- 批准号:
1213151 - 财政年份:2012
- 资助金额:
$ 53.61万 - 项目类别:
Continuing Grant














{{item.name}}会员




