Analysis and Numerical Techniques for Optimal Control Problems Involving Variational Inequalities Arising in Elastoplasticity

涉及弹塑性变分不等式的最优控制问题的分析和数值技术

基本信息

项目摘要

Solid bodies depart from their rest shape under the influence of applied loads. In case the applied loads or stresses are sufficiently small, many solids exhibit a linearly elastic and reversible behavior. If, however, the stress induced by the applied loads exceeds a certain threshold (the yield stress), the material behavior switches from the elastic to the so-called plastic regime. In this state, the overall loading process is no longer reversible and permanent deformations remain even after the loads are withdrawn. Mathematically, this leads to a description involving variational inequalities.Plastic deformation is desired for instance as an industrial shaping technique of metal workpieces. The task of finding appropriate time-dependent loads which effect a desired final deformation leads to optimal control problems for elastoplasticity systems. The main goals of this project are to investigate these optimization problems, to quantify the error due to discretization, and to develop fast algorithms for their solution.
固体在外加载荷的影响下会偏离其静止形状。在所施加的载荷或应力足够小的情况下,许多固体表现出线性弹性和可逆行为。然而,如果由所施加的载荷引起的应力超过某个阈值(屈服应力),则材料行为从弹性状态切换到所谓的塑性状态。在这种状态下,整个加载过程不再可逆,即使在负载撤回后,永久变形仍然存在。从数学上讲,这导致了涉及变分不等式的描述。例如,作为金属工件的工业成形技术,需要塑性变形。找到适当的时间依赖性的负载,影响所需的最终变形的任务导致弹塑性系统的最优控制问题。这个项目的主要目标是研究这些优化问题,量化由于离散化的错误,并开发快速算法解决这些问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Roland Herzog其他文献

Professor Dr. Roland Herzog的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Roland Herzog', 18)}}的其他基金

A Calculus for Non-Smooth Shape Optimization with Applications to Geometric Inverse Problems
非光滑形状优化微积分及其在几何反问题中的应用
  • 批准号:
    314150341
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Optimal Control of Dissipative Solids: Viscosity Limits and Non-Smooth Algorithms
耗散固体的最优控制:粘度限制和非光滑算法
  • 批准号:
    314066412
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Impulse Control Problems and Adaptive Numerical Solution of Quasi-Variational Inequalities in Markovian Factor Models
马尔可夫因子模型中拟变分不等式的脉冲控制问题和自适应数值解
  • 批准号:
    265374484
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Preconditioned SQP solvers for nonlinear optimization problems with partial differential equations
用于偏微分方程非线性优化问题的预处理 SQP 求解器
  • 批准号:
    215680620
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Machine Learning and Optimal Experimental Design for Thermodynamic Property Modeling
热力学性质建模的机器学习和优化实验设计
  • 批准号:
    466528284
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Multilevel Architectures and Algorithms in Deep Learning
深度学习中的多级架构和算法
  • 批准号:
    464103607
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Phase field methods, parameter identification and process optimisation
相场方法、参数识别和工艺优化
  • 批准号:
    511588106
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Units

相似海外基金

Nonsmooth Analysis and Numerical Optimization Techniques beyond Convexity
超越凸性的非光滑分析和数值优化技术
  • 批准号:
    1716057
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Validation of Constitutive and Numerical Modeling Techniques for Soil Liquefaction Analysis
合作研究:土壤液化分析本构和数值建模技术的验证
  • 批准号:
    1635524
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Validation of Constitutive and Numerical Modeling Techniques for Soil Liquefaction Analysis
合作研究:土壤液化分析本构和数值建模技术的验证
  • 批准号:
    1635307
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Validation of Constitutive and Numerical Modeling Techniques for Soil Liquefaction Analysis
合作研究:土壤液化分析本构和数值建模技术的验证
  • 批准号:
    1635040
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
New techniques in convex, variational and numerical analysis with applications to economic theory
凸、变分和数值分析新技术及其在经济理论中的应用
  • 批准号:
    378819-2009
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Development of corrosion monitoring techniques using numerical inverse analysis for Haneda Runway D corrosion protection management
开发利用数值反演分析的腐蚀监测技术,用于羽田跑道 D 腐蚀防护管理
  • 批准号:
    22560477
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of advanced measurement techniques and numerical analysis for surface failure of slopes during torrential rainfall (guerrilla-like rainfall)
开发暴雨(游击式降雨)期间斜坡表面破坏的先进测量技术和数值分析
  • 批准号:
    22760357
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
New techniques in convex, variational and numerical analysis with applications to economic theory
凸、变分和数值分析新技术及其在经济理论中的应用
  • 批准号:
    378819-2009
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Performance Analysis and Optimization of CO_2 Heat Pump Water Heating Systems by Integration of Numerical Simulation Techniques
集成数值模拟技术的CO_2热泵热水系统性能分析与优化
  • 批准号:
    19560850
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of numerical analysis techniques for high-speed low Reynolds Number flows
高速低雷诺数流数值分析技术的开发
  • 批准号:
    18686069
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Young Scientists (A)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了