Impulse Control Problems and Adaptive Numerical Solution of Quasi-Variational Inequalities in Markovian Factor Models

马尔可夫因子模型中拟变分不等式的脉冲控制问题和自适应数值解

基本信息

项目摘要

Impulse control problems are ubiquitous when trading in financial markets. One striking example are portfolio optimization problems under transaction costs. Their mathematical description leads to quasi-variational inequalities, which typically do not admit analytical solutions. Current numerical methods, however, mostly do not incorporate adaptive techniques. Adaptive discretization is the key to an efficient and accurate determination of optimal trading strategies. In this project we shall develop adaptive methods and combine them with effective preconditioned solvers to obtain an efficient algorithm for the solution of quasi-variational inequalities. Integral terms, which occur in markets with jumps, will be included. Besides this, the current turbulence in financial markets, such as the credit crisis and the European financial crisis, puts the focus on increasing credit and counterparty risk. This asks for an extension of existing models. Markovian factor models are an appropriate tool to achieve a low-dimensional representation of complex dynamics on financial markets. We will formulate and analyze the ensuing problems as impulse control problems, for instance in portfolio optimization. Their solution will ask for those efficient and adaptive numerical methods for quasi-variational inequalities, which are developed as part of the project. Last but not least, the practical application requires the estimation of model parameters by means of historical data. This additional difficulty will be tackled by extending existing methodologies from incomplete information. The above-mentioned approaches will be extended in this direction. This is necessary to guarantee the practical applicability of the developed schemes.
在金融市场交易时,冲动控制问题无处不在。一个明显的例子是有交易成本的投资组合优化问题。它们的数学描述导致了准变分不等式,这通常不允许有解析解。然而,目前的数值方法大多不包含自适应技术。自适应离散化是高效、准确地确定最优交易策略的关键。在这个项目中,我们将开发自适应方法,并将它们与有效的预条件求解器相结合,以获得求解拟变分不等式的有效算法。积分项,出现在跳跃的市场中,将被包括在内。此外,当前金融市场的动荡,如信贷危机和欧洲金融危机,将重点放在增加信贷和交易对手风险上。这就要求延长现有的模型。马尔可夫因素模型是实现金融市场复杂动态的低维表示的合适工具。我们将把随之而来的问题表述和分析为冲动控制问题,例如在投资组合优化方面。他们的解决方案将需要那些有效的和自适应的拟变分不等式的数值方法,这些方法是作为该项目的一部分开发的。最后但并非最不重要的是,实际应用需要利用历史数据来估计模型参数。这个额外的困难将通过从不完整的信息扩展现有的方法来解决。上述办法将向这一方向延伸。这对于保证所开发方案的实际适用性是必要的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Roland Herzog其他文献

Professor Dr. Roland Herzog的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Roland Herzog', 18)}}的其他基金

A Calculus for Non-Smooth Shape Optimization with Applications to Geometric Inverse Problems
非光滑形状优化微积分及其在几何反问题中的应用
  • 批准号:
    314150341
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Optimal Control of Dissipative Solids: Viscosity Limits and Non-Smooth Algorithms
耗散固体的最优控制:粘度限制和非光滑算法
  • 批准号:
    314066412
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Preconditioned SQP solvers for nonlinear optimization problems with partial differential equations
用于偏微分方程非线性优化问题的预处理 SQP 求解器
  • 批准号:
    215680620
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Analysis and Numerical Techniques for Optimal Control Problems Involving Variational Inequalities Arising in Elastoplasticity
涉及弹塑性变分不等式的最优控制问题的分析和数值技术
  • 批准号:
    133426576
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Machine Learning and Optimal Experimental Design for Thermodynamic Property Modeling
热力学性质建模的机器学习和优化实验设计
  • 批准号:
    466528284
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Multilevel Architectures and Algorithms in Deep Learning
深度学习中的多级架构和算法
  • 批准号:
    464103607
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Phase field methods, parameter identification and process optimisation
相场方法、参数识别和工艺优化
  • 批准号:
    511588106
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Units

相似国自然基金

Cortical control of internal state in the insular cortex-claustrum region
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    25 万元
  • 项目类别:

相似海外基金

Stochastic optimal control problems in risk management
风险管理中的随机最优控制问题
  • 批准号:
    RGPIN-2020-04338
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Inverse Problems in Mechatronic System Integration and Control
机电系统集成与控制中的反问题
  • 批准号:
    DGECR-2022-00042
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Launch Supplement
Stochastic Volterra integral equations and related control problems
随机 Volterra 积分方程及相关控制问题
  • 批准号:
    22K13958
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Research on Applications of Advanced Stochastic Control and Game Theory to Trade Execution Problems in Financial Markets
高级随机控制和博弈论在金融市场交易执行问题中的应用研究
  • 批准号:
    22K01573
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Orthogonalization-based manipulated-variable ranking for identifying and addressing gain-conditioning problems in multivariable control systems
基于正交化的操纵变量排序,用于识别和解决多变量控制系统中的增益调节问题
  • 批准号:
    567501-2021
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Alliance Grants
Inverse Problems in Mechatronic System Integration and Control
机电系统集成与控制中的反问题
  • 批准号:
    RGPIN-2022-05271
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Orthogonalization-based manipulated-variable ranking for identifying and addressing gain-conditioning problems in multivariable control systems
基于正交化的操纵变量排序,用于识别和解决多变量控制系统中的增益调节问题
  • 批准号:
    567501-2021
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Alliance Grants
Prenatal Environmental Mixtures, Cognitive Control and Reward Processes, And Risk for Psychiatric Problems in Adolescence.
产前环境混合物、认知控制和奖励过程以及青春期精神问题的风险。
  • 批准号:
    10303872
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Improved Numerical Methods for Solving Optimal Control Problems with Nonsmooth and Singular Solutions
解决具有非光滑和奇异解的最优控制问题的改进数值方法
  • 批准号:
    2031213
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Time-inconsistent stochastic control problems and related topics
时间不一致随机控制问题及相关主题
  • 批准号:
    21J00460
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了