Optimal Control of Dissipative Solids: Viscosity Limits and Non-Smooth Algorithms
耗散固体的最优控制:粘度限制和非光滑算法
基本信息
- 批准号:314066412
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Priority Programmes
- 财政年份:2016
- 资助国家:德国
- 起止时间:2015-12-31 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The proposed project concerns the optimal control of dissipative solids. Our point of departure is a thermodynamically consistent material model which takes into account damage effects as well as thermo-elastoplasticity. A modern solution theory for such systems with rate-independent components is based on so-called balanced viscosity solutions whose existence is proved by means of viscous regularization and a subsequent passage to the limit in the viscosity parameters.Within the proposed project, we intend to analyze the optimization of damage and thermo-plastic deformation processes under this solution concept. Besides the existence of optimal controls, we are mainly interested in the approximability of locally optimal controls by viscous regularization.The rate-dependent, viscous problems have a physical meaning in their own right, and they are still non-smooth in the sense that the associated control-to-state operator is, in general, not Gateaux differentiable. Moreover, the viscous problems serve as a basis for the development of an efficient optimization algorithm, a bundle method in function space. To apply it, elements of the subdifferential in the sense of Clarke are to be determined on the basis of directional derivatives for the viscous model problems.By using a path-following approach for vanishing viscosity, we expect to be able to compute optimal solutions even of the associated rate-independent problems.
拟议项目涉及耗散固体的优化控制。我们的出发点是热力学一致的材料模型,该模型考虑了损伤效应以及热弹塑性。这种具有速率无关分量的系统的现代解理论基于所谓的平衡粘度解,其存在通过粘性正则化和随后达到粘度参数极限来证明。在所提出的项目中,我们打算分析在此解概念下的损伤和热塑性变形过程的优化。除了最优控制的存在之外,我们主要感兴趣的是通过粘性正则化来逼近局部最优控制。速率相关的粘性问题本身就具有物理意义,并且它们仍然是非光滑的,因为相关的控制到状态算子通常不是 Gateaux 可微的。此外,粘性问题是开发高效优化算法(函数空间中的捆绑方法)的基础。为了应用它,克拉克意义上的次微分的元素将根据粘性模型问题的方向导数来确定。通过使用消失粘性的路径跟踪方法,我们期望能够计算甚至相关的速率无关问题的最优解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Roland Herzog其他文献
Professor Dr. Roland Herzog的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Roland Herzog', 18)}}的其他基金
A Calculus for Non-Smooth Shape Optimization with Applications to Geometric Inverse Problems
非光滑形状优化微积分及其在几何反问题中的应用
- 批准号:
314150341 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Priority Programmes
Impulse Control Problems and Adaptive Numerical Solution of Quasi-Variational Inequalities in Markovian Factor Models
马尔可夫因子模型中拟变分不等式的脉冲控制问题和自适应数值解
- 批准号:
265374484 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Research Grants
Preconditioned SQP solvers for nonlinear optimization problems with partial differential equations
用于偏微分方程非线性优化问题的预处理 SQP 求解器
- 批准号:
215680620 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Research Grants
Analysis and Numerical Techniques for Optimal Control Problems Involving Variational Inequalities Arising in Elastoplasticity
涉及弹塑性变分不等式的最优控制问题的分析和数值技术
- 批准号:
133426576 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Priority Programmes
Machine Learning and Optimal Experimental Design for Thermodynamic Property Modeling
热力学性质建模的机器学习和优化实验设计
- 批准号:
466528284 - 财政年份:
- 资助金额:
-- - 项目类别:
Priority Programmes
Multilevel Architectures and Algorithms in Deep Learning
深度学习中的多级架构和算法
- 批准号:
464103607 - 财政年份:
- 资助金额:
-- - 项目类别:
Priority Programmes
Phase field methods, parameter identification and process optimisation
相场方法、参数识别和工艺优化
- 批准号:
511588106 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Units
相似国自然基金
Cortical control of internal state in the insular cortex-claustrum region
- 批准号:
- 批准年份:2020
- 资助金额:25 万元
- 项目类别:
相似海外基金
Development of a Cell-Based Assay for Tetanus Vaccine Quality Control
破伤风疫苗质量控制细胞检测方法的开发
- 批准号:
10101986 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Collaborative R&D
Nuclear RNA surveillance and its connection to splicing quality control
核 RNA 监测及其与剪接质量控制的联系
- 批准号:
DP240102611 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Discovery Projects
Nanoengineered hybrid coatings that control inflammation to artificial bone
控制人造骨炎症的纳米工程混合涂层
- 批准号:
DP240103271 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Discovery Projects
Host-Guest Complexation: A Modular Approach for Structural Control (MAS-Control) in Supramolecular Polymerization
主客体络合:超分子聚合中结构控制(MAS-Control)的模块化方法
- 批准号:
EP/Y027965/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Fellowship
Evaluating the effectiveness and sustainability of integrating helminth control with seasonal malaria chemoprevention in West African children
评估西非儿童蠕虫控制与季节性疟疾化学预防相结合的有效性和可持续性
- 批准号:
MR/X023133/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Fellowship
Atomic Anxiety in the New Nuclear Age: How Can Arms Control and Disarmament Reduce the Risk of Nuclear War?
新核时代的原子焦虑:军控与裁军如何降低核战争风险?
- 批准号:
MR/X034690/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Fellowship
Control of pulsatile reproductive hormone secretion by sleep-wake transitions
通过睡眠-觉醒转换控制脉动生殖激素分泌
- 批准号:
BB/Y003578/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Bacteriophage control of host cell DNA transactions by small ORF proteins
噬菌体通过小 ORF 蛋白控制宿主细胞 DNA 交易
- 批准号:
BB/Y004426/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Ready, Aim, Fire: understanding Sfa2-mediated control of the Type VI secretion system for interbacterial competition and invasion
准备、瞄准、开火:了解 Sfa2 介导的 VI 型分泌系统对细菌间竞争和入侵的控制
- 批准号:
BB/Y00048X/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Haptic Shared Control Systems And A Neuroergonomic Approach To Measuring System Trust
触觉共享控制系统和测量系统信任的神经工学方法
- 批准号:
EP/Y00194X/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant














{{item.name}}会员




