Statistical Models for Monitoring Educational Progress
监测教育进展的统计模型
基本信息
- 批准号:9907447
- 负责人:
- 金额:$ 6.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Fellowship Award
- 财政年份:1999
- 资助国家:美国
- 起止时间:1999-09-01 至 2000-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award supports the investigator's work at the University of Pittsburgh's Learning Research and Development Center (LRDC). Projects to be initiated include: (1) Analyzing school district data archives with an eye toward evaluating educational progress and monitoring the outcomes of educational innovations; (2) Exploring social judgement in education, in particular in the development of an institutional portfolio rating system for classrooms and schools, based on the "Principles for Learning" of LRDC's Institute for Learning; and (3) Laying technical groundwork for a bank of linked topical tests instantiating a purely standards-referenced testing program. All three are connected to ongoing research programs at LRDC. These projects are designed to contribute to the development of data collection systems for adequate school accountability systems and for educational policy evaluation. Research conducted through the Institute for Learning and elsewhere suggests that sustained improvement in student achievement is most reliably attained through institutional change. Yet most currently implemented accountability systems focus instead on individual student outcomes, and often are confounded with high-stakes decisions for individual students. The first project will explore whether existing school district data archives can be exploited to limit additional individual student testing when student achievement data is called for. The second project will apply methodology developed over the past ten years for student portfolio assessment to the development and rating of institutional portfolios intended to show that local institutions (e.g., classrooms, schools and districts) are engaged in a process of professional development that ensures long term gains for students. The banked tests in the third project would each cover fairly narrow topics, such as integer arithmetic, fractions, etc., and could be used for example to assess the distribution of student achievement within a district, school, or classroom relative to specific learning standards. This research is supported by the Methodology, Measurement, and Statistics Program and the Statistics and Probability Program under the Mid-Career Methodological Opportunities Fellowship Announcement.
该奖项支持研究人员在匹兹堡大学学习研究与发展中心(LRDC)的工作。 将启动的项目包括:(1)分析学区数据档案,着眼于评估教育进展和监测教育创新的成果;(2)探讨教育方面的社会判断,特别是在根据LRDC学习研究所的“学习原则”制定教室和学校的机构组合评级系统方面;以及(3)为一组链接的主题测试奠定技术基础,以实例化一个纯粹的标准参考测试程序。 这三个项目都与LRDC正在进行的研究项目有关。 这些项目旨在促进建立数据收集系统,以建立适当的学校问责制和教育政策评估。 通过学习研究所和其他地方进行的研究表明,通过体制改革最可靠地实现学生成绩的持续提高。 然而,大多数目前实施的问责制度,而不是集中在个别学生的结果,往往是混淆与高风险的决定,为个别学生。 第一个项目将探讨是否可以利用现有的学区数据档案,以限制额外的个别学生测试时,学生成绩数据的要求。 第二个项目将把过去十年发展的学生档案袋评估方法应用于院校档案袋的发展和评级,以显示本地院校(例如,教室、学校和地区)参与专业发展进程,确保学生的长期收益。 在第三个项目中,每个测试都涵盖了相当狭窄的主题,如整数算术,分数等,并且可以用于例如相对于特定的学习标准来评估区域、学校或教室内的学生成绩的分布。 这项研究得到了方法,测量和统计计划以及职业中期方法学机会奖学金公告下的统计和概率计划的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Brian Junker其他文献
Bayesian hierarchical models for soil CO2 flux and leak detection at geologic sequestration sites
- DOI:
10.1007/s12665-011-0903-5 - 发表时间:
2011-01-21 - 期刊:
- 影响因子:2.800
- 作者:
Ya-Mei Yang;Mitchell J. Small;Brian Junker;Grant S. Bromhal;Brian Strazisar;Arthur Wells - 通讯作者:
Arthur Wells
Brian Junker的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Brian Junker', 18)}}的其他基金
The Expanded Hierarchical Rater Model: A Framework for the Analysis of Ratings
扩展的分层评级模型:评级分析框架
- 批准号:
1324587 - 财政年份:2013
- 资助金额:
$ 6.49万 - 项目类别:
Standard Grant
Hierarchical Models for the Formation and Evolution of Ensembles of Social Networks
社交网络集成的形成和演化的层次模型
- 批准号:
1229271 - 财政年份:2012
- 资助金额:
$ 6.49万 - 项目类别:
Standard Grant
VIGRE in Statistics at Carnegie Mellon
卡内基梅隆大学统计学 VIGRE
- 批准号:
0240019 - 财政年份:2003
- 资助金额:
$ 6.49万 - 项目类别:
Continuing Grant
Latent Variable Models in Action: Hierarchical Bayes and Mixture Models for Repeated Discrete Measures with Individual Differences
潜变量模型的应用:具有个体差异的重复离散测量的分层贝叶斯和混合模型
- 批准号:
9705032 - 财政年份:1997
- 资助金额:
$ 6.49万 - 项目类别:
Continuing Grant
Theory and Applications of Latent Variable and Mixture Models for Repeated Measurements
重复测量潜变量和混合模型的理论与应用
- 批准号:
9404438 - 财政年份:1994
- 资助金额:
$ 6.49万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
新型手性NAD(P)H Models合成及生化模拟
- 批准号:20472090
- 批准年份:2004
- 资助金额:23.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Using models and historical data to guide effective monitoring and enhance understanding of deep ocean oxygen variability
合作研究:利用模型和历史数据指导有效监测并增强对深海氧气变化的理解
- 批准号:
2242742 - 财政年份:2023
- 资助金额:
$ 6.49万 - 项目类别:
Standard Grant
New Technology for In Vivo Monitoring the Brain Extracellular Proteome at High Spatial Resolution in Substance Abuse Models
在药物滥用模型中以高空间分辨率体内监测脑细胞外蛋白质组的新技术
- 批准号:
10584195 - 财政年份:2023
- 资助金额:
$ 6.49万 - 项目类别:
Demonstrating the feasibility of applying machine learning models to railway condition data: Engine condition monitoring and failure prediction
展示将机器学习模型应用于铁路状况数据的可行性:发动机状况监测和故障预测
- 批准号:
10080979 - 财政年份:2023
- 资助金额:
$ 6.49万 - 项目类别:
Collaborative R&D
Collaborative Research: Using models and historical data to guide effective monitoring and enhance understanding of deep ocean oxygen variability
合作研究:利用模型和历史数据指导有效监测并增强对深海氧气变化的理解
- 批准号:
2242741 - 财政年份:2023
- 资助金额:
$ 6.49万 - 项目类别:
Standard Grant
Collaborative Research: Using models and historical data to guide effective monitoring and enhance understanding of deep ocean oxygen variability
合作研究:利用模型和历史数据指导有效监测并增强对深海氧气变化的理解
- 批准号:
2242743 - 财政年份:2023
- 资助金额:
$ 6.49万 - 项目类别:
Standard Grant
Smart ventilated cage systems for next-level experimental design and monitoring of specialized animal models.
智能通风笼系统,用于下一级实验设计和专门动物模型的监测。
- 批准号:
10737361 - 财政年份:2023
- 资助金额:
$ 6.49万 - 项目类别:
CE324: Farming for carbon: developing new age models and monitoring methods to mitigate climate change
CE324:碳农业:开发新时代模型和监测方法以缓解气候变化
- 批准号:
2744825 - 财政年份:2022
- 资助金额:
$ 6.49万 - 项目类别:
Studentship
Interaction of Sound with Sea-Ice for Improved Arctic Monitoring: Measurements and Models
声音与海冰的相互作用以改善北极监测:测量和模型
- 批准号:
567868-2022 - 财政年份:2022
- 资助金额:
$ 6.49万 - 项目类别:
Postdoctoral Fellowships
RECODE: Non-invasive cell patterning and monitoring to generate data-guided computational models that inform synthetic gene circuit-guided cartilage development
RECODE:非侵入性细胞图案化和监测,以生成数据引导的计算模型,为合成基因电路引导的软骨发育提供信息
- 批准号:
2225568 - 财政年份:2022
- 资助金额:
$ 6.49万 - 项目类别:
Standard Grant
Using single-neuron recordings in the human brain to inform cognitive models of error monitoring
利用人脑中的单神经元记录为错误监控的认知模型提供信息
- 批准号:
2219800 - 财政年份:2022
- 资助金额:
$ 6.49万 - 项目类别:
Standard Grant