Generating Machine-Optimal Numerical Control Paths
生成机器最优数控路径
基本信息
- 批准号:9912558
- 负责人:
- 金额:$ 24.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing grant
- 财政年份:2000
- 资助国家:美国
- 起止时间:2000-09-01 至 2003-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The objective of this research is to generate the fastest tool paths to sweep a three-dimensional surface. This will be accomplished by first developing a mathematical formulation which captures all the practical constraints of machining, including motor speed limits, acceleration limits, surface finish requirements, machine kinematics and the effects of path discontinuities. It is likely that the formulated problem will not yield a closed-form solution. Several numerical approaches will be tested. A "greedy" approach has shown initial promise. In this approach, the tool paths are denerated using a local optimality criterion in place of the global optimality criterion. A second approach is to generate candidate tool path families are using parametric "basis" curves. A third approach which will be studied is a global search; the surface will be broken into smaller and smaller elemefltts, and tool paths directions will be varied individually in each element. The third approach is computationally expensive, but is also likely to yield the best results.If successful, this research will yield faster tools paths for high speed machining. As the spindle speeds available in CNC machine tools have increased, linear actuation systems have increasingly become the bottleneck in machining performance. Upgrading to faster linear motor technologies is very expensive. The tool paths enabled by this research will better utilize the capabilities of todays machine tool structures with new spindle technologies, and enable greater productivity without significantly greater costs.
这项研究的目标是生成扫描三维曲面的最快刀具路径。这将通过首先开发一个数学公式来实现,该公式捕获了加工的所有实际约束,包括电机速度限制、加速限制、表面光洁度要求、机床运动学和路径不连续的影响。公式化的问题很可能不会产生封闭形式的解。将对几种数值方法进行测试。一种“贪婪”的方法已经显示出初步的前景。在该方法中,用局部最优性准则代替全局最优性准则来退化刀具路径。第二种方法是使用参数“基本”曲线生成候选刀具轨迹族。将研究的第三种方法是全局搜索;曲面将被分解成越来越小的元素,并且刀具路径方向将在每个元素中单独改变。第三种方法计算昂贵,但也可能产生最好的结果。如果成功,这项研究将为高速加工提供更快的刀具路径。随着数控机床主轴转速的提高,直线驱动系统越来越成为影响加工性能的瓶颈。升级到更快的直线电机技术是非常昂贵的。通过这项研究实现的刀具路径将更好地利用当今采用新主轴技术的机床结构的能力,并在不显著增加成本的情况下实现更高的生产率。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sanjay Sarma其他文献
Selective learning for sensing using shift-invariant spectrally stable undersampled networks
使用位移不变且光谱稳定的欠采样网络进行传感的选择性学习
- DOI:
10.1038/s41598-024-83706-8 - 发表时间:
2024-12-30 - 期刊:
- 影响因子:3.900
- 作者:
Ankur Verma;Ayush Goyal;Sanjay Sarma;Soundar Kumara - 通讯作者:
Soundar Kumara
Sanjay Sarma的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sanjay Sarma', 18)}}的其他基金
Reference Free Part Encapsulation: A New Universal Fixturing Technology
无参考零件封装:一种新的通用夹具技术
- 批准号:
9713902 - 财政年份:1997
- 资助金额:
$ 24.41万 - 项目类别:
Standard Grant
CAREER: A Research and Teaching Plan for Computer Integrated Manufacturing
职业:计算机集成制造的研究和教学计划
- 批准号:
9702913 - 财政年份:1997
- 资助金额:
$ 24.41万 - 项目类别:
Continuing Grant
相似国自然基金
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
相似海外基金
Exploration of the optimal pH for the graft during cold storage and machine perfusion
移植物冷藏和机器灌注过程中最佳pH值的探索
- 批准号:
23K08022 - 财政年份:2023
- 资助金额:
$ 24.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Improving Interpretable Machine Learning for Plasmas: Towards Physical Insight, Data-Driven Models, and Optimal Sensing
改进等离子体的可解释机器学习:迈向物理洞察、数据驱动模型和最佳传感
- 批准号:
2329765 - 财政年份:2023
- 资助金额:
$ 24.41万 - 项目类别:
Continuing Grant
Optimal control approach to machine learning with physical explainability
具有物理可解释性的机器学习最优控制方法
- 批准号:
23H01436 - 财政年份:2023
- 资助金额:
$ 24.41万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Optimal Transport Applications to Probability, Machine Learning, and Kinetic Theory
最优运输在概率、机器学习和动力学理论中的应用
- 批准号:
2205937 - 财政年份:2022
- 资助金额:
$ 24.41万 - 项目类别:
Standard Grant
Machine Learning through the Lenses of Optimal Transportation
从最佳交通的角度进行机器学习
- 批准号:
2744976 - 财政年份:2022
- 资助金额:
$ 24.41万 - 项目类别:
Studentship
Optimal Online Machine Learning Algorithms
最佳在线机器学习算法
- 批准号:
555789-2020 - 财政年份:2022
- 资助金额:
$ 24.41万 - 项目类别:
Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Development of reverse design system for optimal membrane structure by JT-VAE machine learning
利用JT-VAE机器学习开发最佳膜结构逆向设计系统
- 批准号:
22K04808 - 财政年份:2022
- 资助金额:
$ 24.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Machine Learning Methods Predicting Optimal Mechanical Properties of Carbon Fibre Thermoplastics
预测碳纤维热塑性塑料最佳机械性能的机器学习方法
- 批准号:
546625-2020 - 财政年份:2022
- 资助金额:
$ 24.41万 - 项目类别:
Postgraduate Scholarships - Doctoral
Numerical Construction of Optimal Estimators Using Machine Learning Tools
使用机器学习工具数值构建最优估计器
- 批准号:
2210216 - 财政年份:2022
- 资助金额:
$ 24.41万 - 项目类别:
Standard Grant
CAREER: Optimal Transport and Dynamics in Machine Learning
职业:机器学习中的最优传输和动力学
- 批准号:
2145900 - 财政年份:2022
- 资助金额:
$ 24.41万 - 项目类别:
Continuing Grant