F-Theory and G-bundles over Elliptic Curves
椭圆曲线上的 F 理论和 G 丛
基本信息
- 批准号:9970437
- 负责人:
- 金额:$ 9.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1999
- 资助国家:美国
- 起止时间:1999-07-01 至 2002-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Proposal: DMS-9970437Principal Investigator: Robert D. FriedmanAbstract:This project involves the study of holomorphic G-bundles over an elliptic curve, where G is a reductive algebraic group, together with various generalizations. If G is the complexification of a compact group K, a closely related question is the classification of two commuting elements in K up to simultaneous conjugation. In joint work with J. Morgan and E. Witten, Friedman has classified holomorphic G-bundles over an elliptic curve. The relative situation for G-bundles over an elliptic fibration has also been studied. The next stage of the project is to work out the relation between these constructions, in the case where G is one of the exceptional groups E6, E7, E8, and corresponding families of K3 or del Pezzo surfaces. In terms of families of commuting elements in compact Lie groups, in joint work with A. Borel and J. Morgan, Friedman has given normal forms for commuting pairs and triples, and the method extends in principle to handle N mutually commuting elements. Compact Lie groups are the symmetry groups of nature, and the possible such groups have been classified and understood for one hundred years. Aside from four infinite series of such groups, there are also a small number of exceptional groups. Recently, such groups have become important in particle physics, because the possible subatomic particles and their interactions seem to be described by such symmetry groups. In particular string theory, which is an attempt to unify quantum mechanics with gravity, has suggested that the universe is 10-dimensional and that the symmetry group involved is one of the exceptional groups. Moreover, in some versions of string theory, the missing 6 dimensions of the universe are accounted for by a so-called elliptic fibration. Thus, the project attempts to study a part of mathematics which is relevant to string theory as well as being an interesting piece of mathematics in its own right.
提案:DMS-9970437主要研究者:Robert D. Friedman摘要:该项目涉及椭圆曲线上的全纯G-丛的研究,其中G是一个约化代数群,以及各种推广。如果G是紧群K的复化,一个密切相关的问题是K中两个交换元素的分类直到同时共轭。在与J.摩根和E.维滕和弗里德曼对椭圆曲线上的全纯G-丛进行了分类。本文还研究了椭圆纤维化上G-丛的相对情形。该项目的下一阶段是在G是例外群E6、E7、E8和相应的K3或del Pezzo曲面族之一的情况下,确定这些构造之间的关系。利用紧李群中的交换元族,与A. Borel和J. Morgan,Friedman给出了交换对和三元组的标准形,并且该方法在原则上扩展到处理N个相互交换的元素。 紧李群是自然界的对称群,一百年来,人们对可能的李群进行了分类和理解。除了四个无限系列的此类群之外,还存在少量的特殊群。最近,这种群在粒子物理学中变得很重要,因为可能的亚原子粒子和它们的相互作用似乎可以用这种对称群来描述。特别是试图统一量子力学和引力的弦理论,它提出宇宙是10维的,所涉及的对称群是例外群之一。此外,在某些版本的弦理论中,宇宙中缺失的6维可以用所谓的椭圆纤维化来解释。因此,该项目试图研究与弦理论相关的数学部分,同时也是一个有趣的数学部分。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert Friedman其他文献
Further observations on the control of postoperative dental pains
- DOI:
10.1016/s0099-6963(25)80042-5 - 发表时间:
1925-09-01 - 期刊:
- 影响因子:2.7
- 作者:
Robert Friedman - 通讯作者:
Robert Friedman
A “Rage-reduction” diagnostic technique with young children
- DOI:
10.1007/bf01442217 - 发表时间:
1970-12-01 - 期刊:
- 影响因子:2.200
- 作者:
Robert Friedman - 通讯作者:
Robert Friedman
Higher Cognition: A Mechanical Perspective
更高的认知:机械视角
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Robert Friedman - 通讯作者:
Robert Friedman
Smoothing cusp singularities of small length
- DOI:
10.1007/bf01456880 - 发表时间:
1983-06-01 - 期刊:
- 影响因子:1.400
- 作者:
Robert Friedman;Rick Miranda - 通讯作者:
Rick Miranda
On complex surfaces diffeomorphic to rational surfaces
- DOI:
10.1007/bf01241123 - 发表时间:
1995-12-01 - 期刊:
- 影响因子:3.600
- 作者:
Robert Friedman;Zhenbo Qin - 通讯作者:
Zhenbo Qin
Robert Friedman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert Friedman', 18)}}的其他基金
Conference on Algebraic Geometry, Mathematical Physics, and Solitons
代数几何、数学物理和孤子会议
- 批准号:
2231173 - 财政年份:2022
- 资助金额:
$ 9.27万 - 项目类别:
Standard Grant
SoCS: OKES: An Open Knowledge Exchange System to Promote Meta-Disciplinary Collaboration Based on Socio-Technical Principles
SoCS:OKES:基于社会技术原则促进元学科协作的开放知识交换系统
- 批准号:
0968445 - 财政年份:2010
- 资助金额:
$ 9.27万 - 项目类别:
Standard Grant
Conference on Topology, Geometry, and Physics; May 2006; New York, NY
拓扑、几何和物理会议;
- 批准号:
0540236 - 财政年份:2005
- 资助金额:
$ 9.27万 - 项目类别:
Standard Grant
Holomorphic G-bundles On Elliptic Fibrations
椭圆纤维上的全纯 G 丛
- 批准号:
0200810 - 财政年份:2002
- 资助金额:
$ 9.27万 - 项目类别:
Continuing Grant
Vertical Integration of Research and Education in Mathematics at Columbia University
哥伦比亚大学数学研究与教育的垂直整合
- 批准号:
9810750 - 财政年份:1999
- 资助金额:
$ 9.27万 - 项目类别:
Continuing Grant
Mathematical Sciences: Geometry and Low-Dimensional Topology in Group Theory
数学科学:群论中的几何和低维拓扑
- 批准号:
9703756 - 财政年份:1997
- 资助金额:
$ 9.27万 - 项目类别:
Standard Grant
Mathematical Sciences: Algebraic Geometry and Seiberg-Witten Invariants
数学科学:代数几何和 Seiberg-Witten 不变量
- 批准号:
9622681 - 财政年份:1996
- 资助金额:
$ 9.27万 - 项目类别:
Standard Grant
Nobel Physics and Chemistry Prizes
诺贝尔物理奖和化学奖
- 批准号:
9511708 - 财政年份:1995
- 资助金额:
$ 9.27万 - 项目类别:
Fixed Amount Award
Mathematical Sciences: Algebraic Geometry and Gauge Theory
数学科学:代数几何和规范论
- 批准号:
9203940 - 财政年份:1992
- 资助金额:
$ 9.27万 - 项目类别:
Continuing Grant
相似国自然基金
系数在局部常层中的上同调理论及其到代数几何的应用
- 批准号:10471105
- 批准年份:2004
- 资助金额:17.0 万元
- 项目类别:面上项目
相似海外基金
Moduli of holomorphic vector bundles over a Riemann surface
黎曼曲面上的全纯向量丛的模
- 批准号:
544920-2019 - 财政年份:2019
- 资助金额:
$ 9.27万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Combinatorial techniques in symplectic geometry: moduli spaces of holomorphic vector bundles over curves
辛几何中的组合技术:曲线上全纯向量丛的模空间
- 批准号:
488168-2016 - 财政年份:2018
- 资助金额:
$ 9.27万 - 项目类别:
Postdoctoral Fellowships
Combinatorial techniques in symplectic geometry: moduli spaces of holomorphic vector bundles over curves
辛几何中的组合技术:曲线上全纯向量丛的模空间
- 批准号:
488168-2016 - 财政年份:2017
- 资助金额:
$ 9.27万 - 项目类别:
Postdoctoral Fellowships
Classification of vector bundles over affine varieties
仿射簇上向量丛的分类
- 批准号:
269706313 - 财政年份:2015
- 资助金额:
$ 9.27万 - 项目类别:
Priority Programmes
Moduli spaces classifying bundles over Azumaya algebras-the case of algebraic surfaces.
模空间对 Azumaya 代数上的丛进行分类——代数曲面的情况。
- 批准号:
191121449 - 财政年份:2011
- 资助金额:
$ 9.27万 - 项目类别:
Research Grants
Single & Two Phase Pressure Drops Over Longer Fuel Bundles
单身的
- 批准号:
400574-2010 - 财政年份:2010
- 资助金额:
$ 9.27万 - 项目类别:
Experience Awards (previously Industrial Undergraduate Student Research Awards)
Single and two-phase pressure drops over CANDU bundles.
CANDU 管束上的单相和两相压降。
- 批准号:
385990-2009 - 财政年份:2009
- 资助金额:
$ 9.27万 - 项目类别:
Experience Awards (previously Industrial Undergraduate Student Research Awards)
Representations of algebraic groups over 2-dimensional fields, G-bundles on surfaces and mathematical physics
二维场上的代数群、曲面上的 G 丛和数学物理的表示
- 批准号:
0600851 - 财政年份:2006
- 资助金额:
$ 9.27万 - 项目类别:
Continuing Grant
Quiver varieties and quantum affine algebras
箭袋簇和量子仿射代数
- 批准号:
13640019 - 财政年份:2001
- 资助金额:
$ 9.27万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CLASSIFICATION OF WEAK FANO MANIFOLDS WHICH ARE DIVISORS IN THE WEIGHTED PROJECTIVE SPACE BUNDLES OVER THE PROJECTIVE LINE
射影线上加权射影空间束中的弱 FANO 流形的分类
- 批准号:
12640048 - 财政年份:2000
- 资助金额:
$ 9.27万 - 项目类别:
Grant-in-Aid for Scientific Research (C)