Noncommutative Algebras
非交换代数
基本信息
- 批准号:9970413
- 负责人:
- 金额:$ 7.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1999
- 资助国家:美国
- 起止时间:1999-06-01 至 2001-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9970413Our research is directed toward better understanding the internal structure and representation theory of certain classes of finitely generated noncommutative algebras. The specific motivating examples include algebraic quantum groups and enveloping algebras of Lie superalgebras. The focus is mainly on prime and primitive ideal theory, and the underlying goal is to study primitive spectra in this context as a type of ``noncommutative affine algebraic geometry.'' Similarly, we seek to determine analogies between the primitive spectra of noncommutative Hopf algebras and affine algebraic groups; this latter objective is largely motivated by the role noncommutative Hopf algebras play in the theory of quantum groups. The technical issues we are concered with in this work include morphisms, deformations, catenarity, module extensions, and ``small'' infinite dimensional quantum groups.The subjects of our research are noncommutative associative algebras. These abstract objects have provided an effective setting for studying systems of polynomial equations in noncommuting variables; such equations are basic to twentieth century mathematics and physics. Our aim in this research is to study a type of ``geometry'' arising from certain noncommutative systems of equations, in analogy to the classical geometry obtained from solutions to systems of polynomial equations in commuting variables.
9970413我们的研究旨在更好地理解某些有限生成的非交换代数的内部结构和表示理论。具体的激励例子包括李超代数的代数量子群和包络代数。本课程的重点主要是素数和本原理想理论,其基本目标是在此背景下将本原谱作为一种“非交换仿射代数几何”来研究。类似地,我们试图确定非对易Hopf代数的本原谱与仿射代数群之间的相似性;这一目标在很大程度上是由非对易Hopf代数在量子群理论中所起的作用所推动的。本文所涉及的技术问题包括态射、形变、链性、模扩张以及“小”的无限维量子群。这些抽象对象为研究非对易变量的多项式方程组提供了一个有效的环境;这样的方程是20世纪数学和物理的基础。我们在这项研究中的目的是研究一种由某些非对易方程组产生的“几何”,类似于从交换变量的多项式方程组的解得到的经典几何。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Edward Letzter其他文献
Edward Letzter的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Edward Letzter', 18)}}的其他基金
REU SITE: Interactions Between Algebra, Computation, and Mathematical Physics
REU 站点:代数、计算和数学物理之间的相互作用
- 批准号:
0138991 - 财政年份:2002
- 资助金额:
$ 7.48万 - 项目类别:
Continuing Grant
Prime Ideals and Subalgebras of Noetherian Hopf Algebras
Noetherian Hopf 代数的素理想和子代数
- 批准号:
9623579 - 财政年份:1996
- 资助金额:
$ 7.48万 - 项目类别:
Standard Grant
Mathematical Sciences: Enveloping Superalgebras, Quantum Groups, and Their Prime Ideals
数学科学:涵盖超代数、量子群及其基本理想
- 批准号:
9302712 - 财政年份:1993
- 资助金额:
$ 7.48万 - 项目类别:
Standard Grant
Mathematical Sciences: Postdoctoral Research Fellowship
数学科学:博士后研究奖学金
- 批准号:
8905675 - 财政年份:1989
- 资助金额:
$ 7.48万 - 项目类别:
Fellowship Award
相似海外基金
Developments of research on graphs by representations of noncommutative algebras
非交换代数表示图的研究进展
- 批准号:
23K03064 - 财政年份:2023
- 资助金额:
$ 7.48万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Operator Algebras Associated to Groups and Noncommutative Convexity
与群和非交换凸性相关的算子代数
- 批准号:
RGPIN-2018-05191 - 财政年份:2022
- 资助金额:
$ 7.48万 - 项目类别:
Discovery Grants Program - Individual
Noncommutative Algebras and Monoidal Triangulated Categories
非交换代数和幺半群三角范畴
- 批准号:
2200762 - 财政年份:2022
- 资助金额:
$ 7.48万 - 项目类别:
Continuing Grant
Noncommutative Algebras and Their Interactions With Algebraic and Arithmetic Geometry
非交换代数及其与代数和算术几何的相互作用
- 批准号:
2101761 - 财政年份:2021
- 资助金额:
$ 7.48万 - 项目类别:
Standard Grant
Noncommutative Algebras and Related Categorical Structures
非交换代数和相关分类结构
- 批准号:
2131243 - 财政年份:2021
- 资助金额:
$ 7.48万 - 项目类别:
Continuing Grant
Function algebras and operator algebras arising in noncommutative harmonic analysis
非交换调和分析中出现的函数代数和算子代数
- 批准号:
2599047 - 财政年份:2021
- 资助金额:
$ 7.48万 - 项目类别:
Studentship
Operator Algebras Associated to Groups and Noncommutative Convexity
与群和非交换凸性相关的算子代数
- 批准号:
RGPIN-2018-05191 - 财政年份:2021
- 资助金额:
$ 7.48万 - 项目类别:
Discovery Grants Program - Individual
Noncommutative association schemes, coherent algebras, their irreducible decompositions and applications
非交换关联方案、相干代数、它们的不可约分解和应用
- 批准号:
20K03527 - 财政年份:2020
- 资助金额:
$ 7.48万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Homological Techniques for Noncommutative Algebras and Tensor Categories
非交换代数和张量范畴的同调技术
- 批准号:
2001163 - 财政年份:2020
- 资助金额:
$ 7.48万 - 项目类别:
Standard Grant
Higher Structures, Homotopy Algebras, and Noncommutative Geometry
高等结构、同伦代数和非交换几何
- 批准号:
2001599 - 财政年份:2020
- 资助金额:
$ 7.48万 - 项目类别:
Standard Grant