Noncommutative Algebras and Related Categorical Structures
非交换代数和相关分类结构
基本信息
- 批准号:2131243
- 负责人:
- 金额:$ 34.51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-15 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Many models in the sciences and engineering lead to mathematical problems about solutions of equations in commuting variables. However, starting with quantum mechanics, a great number of models emerged that led to mathematical problems involving variables that no longer commute. Noncommutative Algebra is one of the areas of mathematics that studies those structures. The research projects that are funded by this award investigate the interrelations between the commutative and noncommutative settings, using a branch of geometry called Poisson geometry. Three other approaches are used to study the noncommutative setting: a combinatorial approach based on intricate internal transformations of the objects, called cluster mutations; an algebraic approach that investigates intrinsically defined structures called Calabi-Yau categories; and a noncommutative geometric approach using quantum versions of symmetric spaces. The four approaches are simultaneously used to carry out a detailed study of the properties and symmetries of noncommutative objects. Further, the noncommutative objects are shown to exhibit various forms of rigidity. This is used to settle problems in algebra, geometry, combinators, and dynamical systems that were previously posed without any reference to the noncommutative setting. These research activities will be used as the foundation for the training of graduate and undergraduate students and for mentoring mathematics postdocs.The research projects funded under this awaard investigate problems in noncommutative algebra, quantum symmetric spaces, and noncommutative projective algebraic geometry and the relations of these problems to Poisson geometry, combinatorics, triangulated categories, and integrable systems. On the one hand, the program aims at using methods from the latter areas to describe the structure and representations of quantum cluster algebras at roots of unity, the Drinfeld doubles of Nichols algebras, the algebras that appear in the theory of quantum symmetric pairs, and the algebras that describe noncommutative projective spaces. In the opposite direction, previously posed problems in the latter areas are converted to problems for noncommutative algebras and their representation categories, and are then resolved within that setting. One of the directions of this program is the construction of universal K-matrices on the symmetric subalgebras of the Drinfeld doubles of Nichols algebras, and using this to study the ring theoretic properties of Nichols algebras. Another direction aims at the classification of irreducible representations of Nichols algebras of diagonal type using Poisson orders and noncommutative discriminants. A third direction develops a general setting for the study of finite dimensional representations of quantum cluster algebras at root of unity using Poisson geometry and Cayley-Hamilton algebras. Three additional directions investigate the geometry of noncommutative projective spaces modeled by higher dimensional elliptic algebras, the structure of 2-Calabi-Yau categories via categorical C-vectors and dynamical systems, and the construction of integral quantum cluster algebra structures on the canonical forms of quantized coordinate rings of varieties in theory of Lie groups.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
科学和工程中的许多模型导致了关于交换变量方程的解的数学问题。然而,从量子力学开始,出现了大量的模型,这些模型导致了涉及不再往返的变量的数学问题。非对易代数是研究这些结构的数学领域之一。由该奖项资助的研究项目使用称为泊松几何的几何学分支来研究对易和非对易环境之间的相互关系。其他三种方法被用来研究非对易环境:一种基于复杂的对象内部变换的组合方法,称为簇突变;一种代数方法,研究被称为Calabi-Yau范畴的内在定义结构;以及一种使用对称空间的量子版本的非对易几何方法。这四种方法同时被用来详细地研究非对易对象的性质和对称性。此外,非对易对象显示出各种形式的刚性。它被用来解决代数、几何、组合子和动力系统中的问题,这些问题以前是在没有任何非对易设置的情况下提出的。这些研究活动将被用作培养研究生和本科生以及指导数学博士后的基础。在此基础上资助的研究项目研究了非交换代数、量子对称空间和非交换射影代数几何中的问题,以及这些问题与泊松几何、组合学、三角范畴和可积系统的关系。一方面,该程序旨在使用后一领域的方法来描述单位根处的量子簇代数、Nichols代数的Drinfeld对偶、量子对称对理论中出现的代数以及描述非对易射影空间的代数的结构和表示。在相反的方向上,将后一领域中先前提出的问题转化为非对易代数及其表示范畴的问题,然后在该环境下求解。这个程序的一个方向是构造Nichols代数的Drinfeld对称子代数上的泛K-矩阵,并用它来研究Nichols代数的环论性质。另一个方向是利用Poisson序和非交换判别式对对角型Nichols代数的不可约表示进行分类。第三个方向发展了利用泊松几何和Cayley-Hamilton代数研究单位根处量子簇代数的有限维表示的一般设置。另外三个方向研究了由高维椭圆代数建模的非交换射影空间的几何,通过范畴C-向量和动力系统构造2-Calabi-Yau范畴,以及在李群理论中各种量子化坐标环的典范形式上构造积分量子簇代数结构。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Poisson orders on large quantum groups
大量子群的泊松阶
- DOI:10.1016/j.aim.2023.109134
- 发表时间:2023
- 期刊:
- 影响因子:1.7
- 作者:Andruskiewitsch, Nicolás;Angiono, Iván;Yakimov, Milen
- 通讯作者:Yakimov, Milen
Poisson geometry and representations of PI 4-dimensional Sklyanin algebras
- DOI:10.1007/s00029-021-00713-7
- 发表时间:2018-02
- 期刊:
- 影响因子:0
- 作者:Chelsea M. Walton;Xingting Wang;M. Yakimov
- 通讯作者:Chelsea M. Walton;Xingting Wang;M. Yakimov
A cluster structure on the coordinate ring of partial flag varieties
偏旗品种坐标环上的簇结构
- DOI:10.1016/j.jalgebra.2023.03.021
- 发表时间:2023
- 期刊:
- 影响因子:0.9
- 作者:Kadhem, Fayadh
- 通讯作者:Kadhem, Fayadh
Noncommutative tensor triangular geometry
非交换张量三角几何
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:1.7
- 作者:Nakano, Daniel;Vashaw, Kent;Yakimov, Milen.
- 通讯作者:Yakimov, Milen.
Defining relations of quantum symmetric pair coideal subalgebras
- DOI:10.1017/fms.2021.61
- 发表时间:2021-04
- 期刊:
- 影响因子:0
- 作者:S. Kolb;M. Yakimov
- 通讯作者:S. Kolb;M. Yakimov
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Milen Yakimov其他文献
A Deodhar-type stratification on the double flag variety
- DOI:
10.1007/s00031-007-0061-8 - 发表时间:
2007-11-27 - 期刊:
- 影响因子:0.400
- 作者:
Ben Webster;Milen Yakimov - 通讯作者:
Milen Yakimov
Poisson geometry and Azumaya loci of cluster algebras
簇代数的泊松几何与阿祖梅亚轨迹
- DOI:
10.1016/j.aim.2024.109822 - 发表时间:
2024-09-01 - 期刊:
- 影响因子:1.500
- 作者:
Greg Muller;Bach Nguyen;Kurt Trampel;Milen Yakimov - 通讯作者:
Milen Yakimov
Partitions of the wonderful group compactification
- DOI:
10.1007/s00031-007-0062-7 - 发表时间:
2007-11-27 - 期刊:
- 影响因子:0.400
- 作者:
Jiang-Hua Lu;Milen Yakimov - 通讯作者:
Milen Yakimov
Milen Yakimov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Milen Yakimov', 18)}}的其他基金
Noncommutative Algebras and Monoidal Triangulated Categories
非交换代数和幺半群三角范畴
- 批准号:
2200762 - 财政年份:2022
- 资助金额:
$ 34.51万 - 项目类别:
Continuing Grant
Noncommutative Algebras and Related Categorical Structures
非交换代数和相关分类结构
- 批准号:
1901830 - 财政年份:2019
- 资助金额:
$ 34.51万 - 项目类别:
Continuing Grant
International Conference on Representation Theory, Mathematical Physics and Integrable Systems
表示论、数学物理和可积系统国际会议
- 批准号:
1803265 - 财政年份:2018
- 资助金额:
$ 34.51万 - 项目类别:
Standard Grant
Quantum Groups and Quantum Cluster Algebras
量子群和量子簇代数
- 批准号:
1303038 - 财政年份:2013
- 资助金额:
$ 34.51万 - 项目类别:
Standard Grant
Quantum Groups, Poisson Lie Groups, and Combinatorics
量子群、泊松李群和组合学
- 批准号:
1001632 - 财政年份:2010
- 资助金额:
$ 34.51万 - 项目类别:
Standard Grant
Poisson Lie groups, representation theory, combinatorics, and integrable systems
泊松李群、表示论、组合学和可积系统
- 批准号:
0701107 - 财政年份:2007
- 资助金额:
$ 34.51万 - 项目类别:
Standard Grant
Poisson Lie groups, integrable systems, and representation theory
泊松李群、可积系统和表示论
- 批准号:
0406057 - 财政年份:2004
- 资助金额:
$ 34.51万 - 项目类别:
Standard Grant
相似海外基金
Amenability properties of semitopological semigroups and related Banach algebras
半拓扑半群和相关巴纳赫代数的顺应性性质
- 批准号:
RGPIN-2022-04137 - 财政年份:2022
- 资助金额:
$ 34.51万 - 项目类别:
Discovery Grants Program - Individual
Amenability properties and related problems of Banach algebras associated to groups and semigroups
与群和半群相关的 Banach 代数的顺应性性质和相关问题
- 批准号:
RGPIN-2016-05987 - 财政年份:2021
- 资助金额:
$ 34.51万 - 项目类别:
Discovery Grants Program - Individual
Hopf algebras and related topics
霍普夫代数及相关主题
- 批准号:
564559-2021 - 财政年份:2021
- 资助金额:
$ 34.51万 - 项目类别:
University Undergraduate Student Research Awards
Lie and Jordan algebras, and related groups
李代数和乔丹代数以及相关群
- 批准号:
RGPIN-2016-04183 - 财政年份:2021
- 资助金额:
$ 34.51万 - 项目类别:
Discovery Grants Program - Individual
Generalized notions of amenability and derivations on Banach algebras related to locally compact groups
与局部紧群相关的 Banach 代数的顺从性和推导的广义概念
- 批准号:
RGPIN-2017-05476 - 财政年份:2021
- 资助金额:
$ 34.51万 - 项目类别:
Discovery Grants Program - Individual
Amenability properties and related problems of Banach algebras associated to groups and semigroups
与群和半群相关的 Banach 代数的顺应性性质和相关问题
- 批准号:
RGPIN-2016-05987 - 财政年份:2020
- 资助金额:
$ 34.51万 - 项目类别:
Discovery Grants Program - Individual
Generalized notions of amenability and derivations on Banach algebras related to locally compact groups
与局部紧群相关的 Banach 代数的顺从性和推导的广义概念
- 批准号:
RGPIN-2017-05476 - 财政年份:2020
- 资助金额:
$ 34.51万 - 项目类别:
Discovery Grants Program - Individual
Representations of symmetric groups, wreath products of symmetric groups and related diagram algebras
对称群的表示、对称群的花圈积及相关图代数
- 批准号:
2289820 - 财政年份:2019
- 资助金额:
$ 34.51万 - 项目类别:
Studentship
Generalized notions of amenability and derivations on Banach algebras related to locally compact groups
与局部紧群相关的 Banach 代数的顺从性和推导的广义概念
- 批准号:
RGPIN-2017-05476 - 财政年份:2019
- 资助金额:
$ 34.51万 - 项目类别:
Discovery Grants Program - Individual
Amenability properties and related problems of Banach algebras associated to groups and semigroups
与群和半群相关的 Banach 代数的顺应性性质和相关问题
- 批准号:
RGPIN-2016-05987 - 财政年份:2019
- 资助金额:
$ 34.51万 - 项目类别:
Discovery Grants Program - Individual