Higher Structures, Homotopy Algebras, and Noncommutative Geometry

高等结构、同伦代数和非交换几何

基本信息

  • 批准号:
    2001599
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

This project involves problems in noncommutative geometry. The idea of noncommutative geometry is to study noncommutative algebras using tools inspired by geometry. Noncommutative algebras are mathematical objects that have addition and multiplication; however the order in which the elements get multiplied might matter. The purpose of the project, which is centeredaround higher structures and homotopy algebras in noncommutative geometry, is to investigate mathematical problems motivated by physics in these fields. More specifically, the project is motivated by a combination of ideas from quantum mechanics, quantum field theory, string theory, and classical areas of mathematics such as Lie theory, representation theory, complex geometry, homological algebra, foliation theory, deformation quantization and index theory, and noncommutative geometry. The interdisciplinary nature of the proposed project promotes further interaction between these fields. The PI continues to disseminate his research by speaking at conferences and seminars and organizing workshops, which provide excellent opportunities for the PI to exchange, interact and collaborate with colleagues from within and outside the US and, in particular, young scientists. This award will support the training of early career researchers that work on related fields.In noncommutative geometry one studies algebras as if they were algebras of functions on manifolds. However, these noncommutative spaces are virtual and not made of points. Dg manifolds are one particular type of such a noncommutative spaces. The space of functions on a dg manifold is a differential graded algebra. Another important class of noncommutative spaces is obtained as deformations of commutative algebras. Deformation quantization aims at throwing a bridge between classical and quantum mechanics. The mathematical structures of the two theories are very different, making it a challenging problem to understand how the transition from classical to quantum works. Quantization, roughly speaking, is the study and prediction of quantum phenomena, which are normally described by noncommutative algebras, from the geometry of their underlying classical counterparts. The PI proposes to continue the study of higher structures and homotopy algebras arising naturally in noncommutative geometry and their relation to representation theory using tools from deformation quantization and Lie algebroid theory. The problems include investigating the role of the Todd class in Tamarkin-Tsygan calculi associated with a dg manifold, studying the formal geometry of dg manifolds and the concept of homotopy equivalence of dg Lie algebroids, establishing a Kontsevich-Duflo type theorem in a wide context, and exploring negatively graded dg manifolds.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个项目涉及到非对易几何的问题。非对易几何的思想是利用受几何启发的工具来研究非对易代数。非交换代数是具有加法和乘法的数学对象;然而,元素相乘的顺序可能很重要。该项目以非对易几何中的更高结构和同伦代数为中心,目的是研究这些领域中由物理驱动的数学问题。更具体地说,这个项目是由量子力学、量子场论、弦理论和经典数学领域(如李论、表示论、复几何、同调代数、分层理论、形变量子化和指数理论以及非对易几何)的组合推动的。拟议项目的跨学科性质促进了这些领域之间的进一步互动。国际和平协会继续通过在会议和研讨会上发言和组织研讨会来传播他的研究成果,这些研讨会为国际和平协会提供了与来自美国国内外的同事,特别是年轻科学家交流、互动和合作的绝佳机会。该奖项将支持在相关领域工作的早期职业研究人员的培训。在非交换几何中,人们研究代数就像它们是流形上的函数的代数一样。然而,这些非对易空间是虚拟的,不是由点组成的。DG流形是这种非对易空间的一种特殊类型。Dg流形上的函数空间是微分分次代数。作为交换代数的变形,得到了另一类重要的非交换空间。形变量子化旨在为经典力学和量子力学之间架起一座桥梁。这两个理论的数学结构非常不同,这使得理解从经典到量子的转换是如何工作的一个具有挑战性的问题。量子化,粗略地说,是对量子现象的研究和预测,这些现象通常由非对易代数描述,来自其潜在的经典对应的几何。PI建议利用形变量子化和李代数体理论的工具,继续研究非对易几何中自然产生的更高结构和同伦代数及其与表示论的关系。这些问题包括调查托德类在与dg流形相关的Tamarkin-Tsygan演算中的作用,研究dg流形的形式几何和dg李代数群的同伦等价概念,在广泛的背景下建立Kontsevich-Duflo类型定理,以及探索负分级dg流形。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Atiyah classes and Kontsevich–Duflo type theorem for dg manifolds
  • DOI:
    10.4064/bc123-3
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Stiénon;P. Xu
  • 通讯作者:
    M. Stiénon;P. Xu
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ping Xu其他文献

Using the Novel Method of Nonthermal Plasma To Add CI Active Sites on Activated Carbon for Removal of Mercury from Flue Gas
利用非热等离子体在活性炭上添加CI活性位点的新方法去除烟气中的汞
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    11.4
  • 作者:
    Bi Zhang;Xiaobo Zeng;Ping Xu;Juan Chen;Yang Xu;Guangqian Luo;Minghou Xu;Hong Yao
  • 通讯作者:
    Hong Yao
Formality theorem for g -manifolds ✩
g 流形的形式定理 ✩
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    C. Acad;Sci;Ser. I Paris;Hsuan;M. Stiénon;Ping Xu;Jacky Michéa
  • 通讯作者:
    Jacky Michéa
Use of the familiarity difference cue in inferential judgments
在推理判断中使用熟悉度差异线索
  • DOI:
    10.3758/s13421-017-0765-5
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Ping Xu;C. González;Justin M. Weinhardt;Janna Chimeli;Figen Karadogan
  • 通讯作者:
    Figen Karadogan
Assignment of absolute configuration of sulfinyl dilactones: Optical rotations and 1H NMR experiment and DFT calculations
亚磺酰双内酯的绝对构型分配:旋光度和1H NMR实验以及DFT计算
  • DOI:
    10.1016/j.molstruc.2010.11.076
  • 发表时间:
    2011-02
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Robert J. Doerksen;Ping Xu;Gang Fu
  • 通讯作者:
    Gang Fu
Coexistence of two D‐lactate‐utilizing systems in Pseudomonas putida KT2440
恶臭假单胞菌 KT2440 中两种乳酸利用系统的共存
  • DOI:
    10.1111/1758-2229.12429
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Yingxin Zhang;Tianyi Jiang;Binbin Sheng;Yangdanyu Long;Chao Gao;Cuiqing Ma;Ping Xu
  • 通讯作者:
    Ping Xu

Ping Xu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ping Xu', 18)}}的其他基金

Applications of Higher Algebraic Structures in Noncommutative Geometry
高等代数结构在非交换几何中的应用
  • 批准号:
    2302447
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Homotopy Algebras in Noncommutative Geometry
非交换几何中的同伦代数
  • 批准号:
    1707545
  • 财政年份:
    2017
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Higher Structures and Groupoids in Noncommutative Geometry
非交换几何中的高级结构和群形
  • 批准号:
    1406668
  • 财政年份:
    2014
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Conferences and School in Poisson Geometry
泊松几何会议和学校
  • 批准号:
    1212475
  • 财政年份:
    2012
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Groupoids, Deformations and Noncommutative Geometry
群形、变形和非交换几何
  • 批准号:
    1101827
  • 财政年份:
    2011
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Operator Algebras and Noncommutative Geometry
算子代数和非交换几何
  • 批准号:
    0801129
  • 财政年份:
    2008
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
IHP Workshop on Groupoids in Operator Algebras and Noncommutative Geometry
IHP 算子代数和非交换几何中的群形研讨会
  • 批准号:
    0654146
  • 财政年份:
    2007
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
IHP Workshop on "Higher Structures in Geometry and Physics"
IHP“几何和物理高级结构”研讨会
  • 批准号:
    0633440
  • 财政年份:
    2006
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
C* - Algebras, Groupoids, and Noncommutative Geometry
C* - 代数、群形和非交换几何
  • 批准号:
    0605725
  • 财政年份:
    2006
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Conference on Groupoids and Stacks in Geometry and Physics
几何和物理中的群形和堆栈会议
  • 批准号:
    0406368
  • 财政年份:
    2004
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似海外基金

Understanding Smooth Structures via Regular Homotopy of Surfaces in 4-Manifolds
通过 4 流形中曲面的正同伦了解光滑结构
  • 批准号:
    2204367
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Conference: Geometry and Physics---Deformations, Homotopy Algebras, and Higher Structures
会议:几何与物理——变形、同伦代数和更高结构
  • 批准号:
    2201270
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Homotopy coherent structures in algebraic quantum field theory
代数量子场论中的同伦相干结构
  • 批准号:
    2742043
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Studentship
Algebraic Structures in Equivariant Homotopy Theory and K Theory
等变同伦理论和K理论中的代数结构
  • 批准号:
    2104300
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Discovery of Dynamic Mechanical Structures through Modeling and Analysis of Closed Chains using Homotopy-Based Optimization
使用基于同伦的优化通过闭链建模和分析发现动态机械结构
  • 批准号:
    2041789
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Workshops: Homotopy Harnessing Higher Structures
研讨会:利用更高结构的同伦
  • 批准号:
    1833295
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Algebraic Structures in Equivariant Homotopy Theory
等变同伦理论中的代数结构
  • 批准号:
    1710534
  • 财政年份:
    2017
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
RUI: Higher Structures in Stable, Equivariant, and Motivic Homotopy Theory
RUI:稳定、等变和动机同伦理论中的高级结构
  • 批准号:
    1709302
  • 财政年份:
    2017
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Study on higher homotopy structures of loop spaces
环空间的高等同伦结构研究
  • 批准号:
    16K17592
  • 财政年份:
    2016
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Mixed Hodge structures in homotopy theory
同伦理论中的混合 Hodge 结构
  • 批准号:
    269490478
  • 财政年份:
    2015
  • 资助金额:
    $ 30万
  • 项目类别:
    Priority Programmes
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了