Research in Representation Theory and Automorphic Forms

表示论和自守形式研究

基本信息

  • 批准号:
    9970480
  • 负责人:
  • 金额:
    $ 18.81万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    1999
  • 资助国家:
    美国
  • 起止时间:
    1999-08-01 至 2003-07-31
  • 项目状态:
    已结题

项目摘要

AbstractWallachThis project aims to use the methods of analysis, homological algebra and geometry in order to study the structure and applications of representations of real reductive groups. In particular the principal investigator plans to continue his development of what he calls "transfer" between real forms of reductive groups over the complex numbers. A new ingredient involves determining explicit multiplicity formulas (analogous to Blattner's formula) for restriction of representations of semisimple groups to symmetric subgroups (noncompact). The theory also provides a new method for proving the unitarizability of representations that are difficult to analyze analytically. This work uses basic invariant theory and computationally intensive algebraic geometry. For the latter, Matt Clegg and the author will be completing the code for the Groebner array which is now in place. This hardware has also been helpful in solving several problems in combinatorics, representation theory, and quantum computing.The relatively inexpensive access to fast computational tools has changed the landscape of "pure mathematics". In fact, it has blurred the distinction between pure and applied mathematics. Mathematicians can now do experiments involving massive calculations to help predict the form of theorems to be proved by mathematical reasoning. This proposed research will make use of these tools. It will also work to enhance the usefulness of massive calculations whose output can be mathematical objects that are described by files that are billions of bytes long . Although the basic research aims of this project are outside the scope of short term applications the methodology is expected to lead to practical applications. For example, methods to help in deciding which aspects of an immense file that describes a complicated object are most important without having the ability to read the full file.
本项目旨在利用分析、同调代数和几何的方法来研究实还原群的表示的结构和应用。特别是,首席研究人员计划继续他所说的在复数上的还原群的实形式之间的“转移”的发展。一项新的内容涉及确定显式重数公式(类似于Blattner公式),用于将半单群的表示限制为对称子群(非紧)。该理论还为证明难以分析的表示的单一性提供了一种新的方法。这项工作使用了基本的不变量理论和计算密集的代数几何。对于后者,Matt Clegg和作者将完成Groebner数组的代码,该代码现在已经到位。这种硬件还帮助解决了组合学、表示论和量子计算中的几个问题。相对便宜的快速计算工具改变了“纯数学”的格局。事实上,它模糊了纯粹数学和应用数学之间的区别。数学家现在可以进行大量计算的实验,以帮助预测要通过数学推理证明的定理的形式。这项拟议的研究将利用这些工具。它还将致力于提高大规模计算的有用性,其输出可以是由数十亿字节长的文件描述的数学对象。虽然这一项目的基本研究目标超出了短期应用的范围,但预计方法论将导致实际应用。例如,在没有读取整个文件的能力的情况下,帮助确定描述复杂对象的巨大文件的哪些方面是最重要的方法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nolan Wallach其他文献

Nolan Wallach的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nolan Wallach', 18)}}的其他基金

Research in Representation Theory
表征论研究
  • 批准号:
    0963035
  • 财政年份:
    2010
  • 资助金额:
    $ 18.81万
  • 项目类别:
    Continuing Grant
Research in Representation Theory & Automorphic Forms
表征论研究
  • 批准号:
    0500495
  • 财政年份:
    2005
  • 资助金额:
    $ 18.81万
  • 项目类别:
    Standard Grant
Research in Representation Theory and Automorphic Forms
表示论和自守形式研究
  • 批准号:
    0200305
  • 财政年份:
    2002
  • 资助金额:
    $ 18.81万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Research in Representation Theory andAutomorphic Forms
数学科学:表示论和自守形式研究
  • 批准号:
    9531908
  • 财政年份:
    1996
  • 资助金额:
    $ 18.81万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Research in Representation Theory andAutomorphic Forms
数学科学:表示论和自守形式研究
  • 批准号:
    9302723
  • 财政年份:
    1993
  • 资助金额:
    $ 18.81万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Research in Representation Theory andAutomorphic Forms
数学科学:表示论和自守形式研究
  • 批准号:
    9116684
  • 财政年份:
    1991
  • 资助金额:
    $ 18.81万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Research in Representation Theory andAutomorphic Forms
数学科学:表示论和自守形式研究
  • 批准号:
    9003206
  • 财政年份:
    1990
  • 资助金额:
    $ 18.81万
  • 项目类别:
    Continuing Grant
U.S.-Argentina Workshop in Reductive Groups; Cordoba, August 23-September 1, 1989
美国-阿根廷还原群研讨会;
  • 批准号:
    8902318
  • 财政年份:
    1989
  • 资助金额:
    $ 18.81万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Research in Representation Theory
数学科学:表示论研究
  • 批准号:
    8703544
  • 财政年份:
    1987
  • 资助金额:
    $ 18.81万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Research in Differential Geometry AndRepresentation Theory
数学科学:微分几何与表示论研究
  • 批准号:
    8402684
  • 财政年份:
    1984
  • 资助金额:
    $ 18.81万
  • 项目类别:
    Continuing Grant

相似海外基金

Collaborative Research: CIF: Medium: Taming Deep Unsupervised Representation Learning in Imaging: Theory and Algorithms
合作研究:CIF:媒介:驯服成像中的深度无监督表示学习:理论和算法
  • 批准号:
    2212065
  • 财政年份:
    2022
  • 资助金额:
    $ 18.81万
  • 项目类别:
    Continuing Grant
Collaborative Research: CIF: Medium: Taming Deep Unsupervised Representation Learning in Imaging: Theory and Algorithms
合作研究:CIF:媒介:驯服成像中的深度无监督表示学习:理论和算法
  • 批准号:
    2212066
  • 财政年份:
    2022
  • 资助金额:
    $ 18.81万
  • 项目类别:
    Continuing Grant
Research on Koszul AS-regular algebras from the categorical view of Non-commutative algebraic geometry and Representation theory
从非交换代数几何和表示论范畴角度研究Koszul AS-正则代数
  • 批准号:
    21K13781
  • 财政年份:
    2021
  • 资助金额:
    $ 18.81万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
NSF-BSF Research in Representation Theory with Applications to Number Theory and Physics
NSF-BSF 表示论及其在数论和物理学中的应用研究
  • 批准号:
    2001537
  • 财政年份:
    2020
  • 资助金额:
    $ 18.81万
  • 项目类别:
    Standard Grant
Research of higher order Painleve systems and rigid systems from a viewpoint of representation theory
从表示论的角度研究高阶Painleve系统和刚性系统
  • 批准号:
    20K03645
  • 财政年份:
    2020
  • 资助金额:
    $ 18.81万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: Conference on Geometric Methods in Representation Theory 2018 and 2019
协作研究:2018年和2019年表示论中的几何方法会议
  • 批准号:
    1839720
  • 财政年份:
    2018
  • 资助金额:
    $ 18.81万
  • 项目类别:
    Standard Grant
Collaborative Research: Rank and Duality in Representation Theory
合作研究:表示论中的等级和对偶性
  • 批准号:
    1805004
  • 财政年份:
    2018
  • 资助金额:
    $ 18.81万
  • 项目类别:
    Standard Grant
Collaborative Research: Rank and Duality in Representation Theory
合作研究:表示论中的等级和对偶性
  • 批准号:
    1804992
  • 财政年份:
    2018
  • 资助金额:
    $ 18.81万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference on Geometric Methods in Representation Theory 2018 and 2019
协作研究:2018年和2019年表示论中的几何方法会议
  • 批准号:
    1839210
  • 财政年份:
    2018
  • 资助金额:
    $ 18.81万
  • 项目类别:
    Standard Grant
Research on characterizations of great antipodal sets as tight designs using representation theory
使用表示理论研究大对映集紧设计的表征
  • 批准号:
    16K17604
  • 财政年份:
    2016
  • 资助金额:
    $ 18.81万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了