Multidimensional Multiwavelets and Time-Frequency Decomposition Techniques
多维多小波和时频分解技术
基本信息
- 批准号:9970524
- 负责人:
- 金额:$ 7.87万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1999
- 资助国家:美国
- 起止时间:1999-08-01 至 2003-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Proposal: DMS-9970524Principal Investigator: Christopher E. HeilAbstract: This project will pursue two main themes. One portion of the research will address one of the most difficult open problems in wavelet theory; namely, the development of a general framework for the construction of nonseparable orthogonal wavelets and multiwavelets in higher dimensions. The starting point is the recent time-domain characterization by the PI of the accuracy conditions for multidimensional multiscaling functions under an arbitrary dilation matrix. Combined with insights from self-similarity and iterated function systems, this suggests the possibility of weak substitutes for the factorizations that play the key role in one-dimensional constructions. The second portion of the research concerns frames in Banach spaces, especially Gabor or windowed Fourier frames. Issues for Gabor systems arising from the interaction between algebra and analysis will be addressed, and Gabor frame decompositions will be applied to analyze pseudodifferential and other operators, utilizing the principle that Gabor frames provide unconditional decompositions for the class of function spaces known as the modulation spaces.This project addresses the mathematics underlying the processing and analysis of signals, such as images, music, and speech, but also more abstract types of signals. A signal can be processed by first breaking it down into simple, basic units and then manipulating those units in several different ways. This can be done in a nonredundant fashion, where each basic unit is independent of the others and contains one essential part of the total signal, or it can be done in a redundant way, where the information contained in different basic units overlaps. Nonredundant decompositions ("bases") may provide the most compact representation of a signal, whereas redundant decompositions ("frames") allow reconstruction of the signal even if some of the basic units are lost in transmission. The objective of this research is to construct and apply both types of decompositions in various settings. Wavelet bases in higher dimensions are especially suitable for the analysis of images. Gabor frames are related to decompositions that have been used throughout mathematics, quantum mechanics, and signal processing, and will be applied in this project to the analysis of operators, or transformations, of signals.
提案:DMS-9970524主要研究者:Christopher E.摘要:这个项目将追求两个主要主题。一部分的研究将解决小波理论中最困难的开放问题之一,即,一个一般的框架的发展建设的不可分的正交小波和多维。出发点是最近的时域表征的PI的多维多尺度函数的精度条件下的任意伸缩矩阵。结合自相似性和迭代函数系统的见解,这表明在一维结构中起关键作用的因子分解有可能被弱替代。 第二部分的研究关注Banach空间中的框架,特别是Gabor或窗口傅立叶框架。将讨论代数与分析之间的相互作用对Gabor系统产生的问题,并将应用Gabor框架分解来分析伪微分和其他算子,利用Gabor框架为称为调制空间的函数空间类提供无条件分解的原理。该项目涉及信号处理和分析的数学基础,如图像,音乐和语音,而且还包括更抽象类型的信号。信号可以通过首先将其分解为简单的基本单元,然后以几种不同的方式操纵这些单元来处理。这可以以非冗余的方式完成,其中每个基本单元独立于其他单元并且包含总信号的一个基本部分,或者可以以冗余的方式完成,其中包含在不同基本单元中的信息重叠。非冗余分解(“基”)可以提供信号的最紧凑的表示,而冗余分解(“帧”)允许信号的重建,即使一些基本单元在传输中丢失。本研究的目的是构建和应用这两种类型的分解在不同的设置。高维小波基特别适合于图像分析。Gabor框架与数学、量子力学和信号处理中使用的分解有关,并将在本项目中应用于信号的算子或变换的分析。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christopher Heil其他文献
Convergence of Frame Series
- DOI:
10.1007/s00041-023-09996-0 - 发表时间:
2023-02-09 - 期刊:
- 影响因子:1.200
- 作者:
Christopher Heil;Pu-Ting Yu - 通讯作者:
Pu-Ting Yu
History and Evolution of the Density Theorem for Gabor Frames
- DOI:
10.1007/s00041-006-6073-2 - 发表时间:
2007-04-11 - 期刊:
- 影响因子:1.200
- 作者:
Christopher Heil - 通讯作者:
Christopher Heil
Christopher Heil的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christopher Heil', 18)}}的其他基金
Time-Frequency and Applied Harmonic Analysis
时频和应用谐波分析
- 批准号:
0806532 - 财政年份:2008
- 资助金额:
$ 7.87万 - 项目类别:
Standard Grant
Southeastern Analysis Meetings and Young Analysts Meeting of Southeast
东南分析会暨东南青年分析师会议
- 批准号:
0400383 - 财政年份:2004
- 资助金额:
$ 7.87万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Focused Research on Wavelets, Frames, and Operator Theory
FRG:协作研究:小波、框架和算子理论的重点研究
- 批准号:
0139261 - 财政年份:2002
- 资助金额:
$ 7.87万 - 项目类别:
Continuing Grant
Mathematical Sciences: Wavelets and Time-Frequency Analysis
数学科学:小波和时频分析
- 批准号:
9401340 - 财政年份:1994
- 资助金额:
$ 7.87万 - 项目类别:
Standard Grant
Mathematical Sciences: Postdoctoral Research Fellowship
数学科学:博士后研究奖学金
- 批准号:
9007212 - 财政年份:1990
- 资助金额:
$ 7.87万 - 项目类别:
Fellowship Award
相似海外基金
Development and Application of Directional Framelets and Complex Multiwavelets
定向框架和复多小波的开发与应用
- 批准号:
RGPIN-2014-05865 - 财政年份:2018
- 资助金额:
$ 7.87万 - 项目类别:
Discovery Grants Program - Individual
Development and Application of Directional Framelets and Complex Multiwavelets
定向框架和复多小波的开发与应用
- 批准号:
RGPIN-2014-05865 - 财政年份:2017
- 资助金额:
$ 7.87万 - 项目类别:
Discovery Grants Program - Individual
Development and Application of Directional Framelets and Complex Multiwavelets
定向框架和复多小波的开发与应用
- 批准号:
RGPIN-2014-05865 - 财政年份:2016
- 资助金额:
$ 7.87万 - 项目类别:
Discovery Grants Program - Individual
Development and Application of Directional Framelets and Complex Multiwavelets
定向框架和复多小波的开发与应用
- 批准号:
RGPIN-2014-05865 - 财政年份:2015
- 资助金额:
$ 7.87万 - 项目类别:
Discovery Grants Program - Individual
Development and Application of Directional Framelets and Complex Multiwavelets
定向框架和复多小波的开发与应用
- 批准号:
RGPIN-2014-05865 - 财政年份:2014
- 资助金额:
$ 7.87万 - 项目类别:
Discovery Grants Program - Individual
Biorthogonale Wavelets und Multiwavelets auf kompakten Mannigfaltigkeiten
紧流形上的双正交小波和多小波
- 批准号:
33873223 - 财政年份:2006
- 资助金额:
$ 7.87万 - 项目类别:
Research Fellowships
Biorthogonal Multiwavelets and Image Compression
双正交多小波和图像压缩
- 批准号:
219956-1999 - 财政年份:1999
- 资助金额:
$ 7.87万 - 项目类别:
Postdoctoral Fellowships
Microlocal filtering with multiwavelets
多小波微局域滤波
- 批准号:
11640166 - 财政年份:1999
- 资助金额:
$ 7.87万 - 项目类别:
Grant-in-Aid for Scientific Research (C)