Mathematical Sciences: Wavelets and Time-Frequency Analysis

数学科学:小波和时频分析

基本信息

项目摘要

9401340 Heil This award supports a mathematical research program in a range of related areas in harmonic analysis, concentrating on time-frequency analysis and wavelet theory, with potential applications to signal processing. There are three main themes of the program. The first concerns the analysis and reconstruction of signals from nonuniform samples of their Gabor transforms. The nonuniformity of the sampling set requires the introduction of new techniques with results formulated in terms of the properties of coherent states. Questions such as whether a given collection of time-frequency shifts of a fixed window function are complete, are minimal, form a frame or form a Riesz basis will be taken up. The second line of investigation studies singular values of Weyl operators. These operators are closely related to Gabor transform with good localizing properties, i.e. operators which concentrate the energy of a function in a given region of space. The localization properties of these operators can be inferred from the behavior of their singular values. Studies of the asymptotic decay of these values will be carried out. Work on wavelets and dilation equations continues earlier work which developed important applications of an older notion of joint spectral radius to the existence and smoothness characterizations of solutions to dilations equations. In this work, properties of non-canonical solutions will be studied. These include non-compactly supported or distributional solutions. Connections with random matrices will be considered. Harmonic analysis combines those elements of mathematics best exemplifying the ideas of synthesis. One seeks to decompose complex problems into fundamental components. These components are then analyzed for their basic characteristics. Finally, the solution is reconstructed through a recombination of the components. The Fourier series and Fourier transform are examples of tools used in this context; one dis crete , the other representing a continuous decomposition. More recently the wavelet theory added new dimensions to some of the more classical approaches to harmonic analysis.
小行星9401340 该奖项支持一系列谐波分析相关领域的数学研究计划,专注于时频分析和小波理论,并具有信号处理的潜在应用。 该计划有三个主要主题。 第一个问题涉及的分析和重建信号的非均匀样本的Gabor变换。 采样集的不均匀性需要引入新的技术,其结果根据相干态的性质来制定。 问题,如是否一个给定的集合的时间频率偏移的一个固定的窗口函数是完整的,是最小的,形成一个框架或形成一个Riesz的基础将采取行动。 第二条调查线研究Weyl算子的奇异值。 这些算子与具有良好局部化性质的Gabor变换密切相关,即将函数的能量集中在给定空间区域的算子。 这些算子的局部化性质可以从其奇异值的行为中推断出来。 将对这些值的渐近衰减进行研究。 小波和膨胀方程的工作继续早期的工作,开发了重要的应用程序的一个旧的概念,联合频谱半径的存在性和光滑性特征的解决方案,膨胀方程。 本文主要研究非正则解的性质。 这些包括非compatible支持的或分布式的解决方案。 将考虑与随机矩阵的连接。 调和分析结合了这些数学元素,最好地体现了综合的思想。 一种是试图将复杂的问题分解为基本的组成部分。 然后分析这些组件的基本特性。 最后,通过组件的重组来重构解决方案。 傅立叶级数和傅立叶变换是在这种情况下使用的工具的例子;一个离散,另一个表示连续分解。最近小波理论增加了新的维度,一些更经典的方法,谐波分析。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Christopher Heil其他文献

Convergence of Frame Series
History and Evolution of the Density Theorem for Gabor Frames

Christopher Heil的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Christopher Heil', 18)}}的其他基金

Time-Frequency and Applied Harmonic Analysis
时频和应用谐波分析
  • 批准号:
    0806532
  • 财政年份:
    2008
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Southeastern Analysis Meetings and Young Analysts Meeting of Southeast
东南分析会暨东南青年分析师会议
  • 批准号:
    0400383
  • 财政年份:
    2004
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Focused Research on Wavelets, Frames, and Operator Theory
FRG:协作研究:小波、框架和算子理论的重点研究
  • 批准号:
    0139261
  • 财政年份:
    2002
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
Multidimensional Multiwavelets and Time-Frequency Decomposition Techniques
多维多小波和时频分解技术
  • 批准号:
    9970524
  • 财政年份:
    1999
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Postdoctoral Research Fellowship
数学科学:博士后研究奖学金
  • 批准号:
    9007212
  • 财政年份:
    1990
  • 资助金额:
    $ 5万
  • 项目类别:
    Fellowship Award

相似国自然基金

Handbook of the Mathematics of the Arts and Sciences的中文翻译
  • 批准号:
    12226504
  • 批准年份:
    2022
  • 资助金额:
    20.0 万元
  • 项目类别:
    数学天元基金项目
SCIENCE CHINA: Earth Sciences
  • 批准号:
    41224003
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Journal of Environmental Sciences
  • 批准号:
    21224005
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Information Sciences
  • 批准号:
    61224002
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Technological Sciences
  • 批准号:
    51224001
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Journal of Environmental Sciences
  • 批准号:
    21024806
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
  • 批准号:
    81024803
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
  • 批准号:
    41024801
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Technological Sciences
  • 批准号:
    51024803
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

Mathematical Sciences: Time Series and Point Processes: Networks and Wavelets
数学科学:时间序列和点过程:网络和小波
  • 批准号:
    9625774
  • 财政年份:
    1996
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Wavelets Based on Several Scaling Functions and Related Applications
数学科学:基于多个标度函数的小波及相关应用
  • 批准号:
    9503282
  • 财政年份:
    1995
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Wavelets Frames and Discrete Group Representations
数学科学:小波框架和离散群表示
  • 批准号:
    9500269
  • 财政年份:
    1995
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Construction of Wavelets on Finite Domans and Applications to Boundary Integral Equations
数学科学:有限域上的小波构造及其在边界积分方程中的应用
  • 批准号:
    9504780
  • 财政年份:
    1995
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Jump and Sharp Cusp Detection by Wavelets
数学科学:小波的跳跃和尖锐尖点检测
  • 批准号:
    9404142
  • 财政年份:
    1994
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Workshop on Wavelets in Biomedical Engineering and Medicine
数学科学:生物医学工程和医学中的小波研讨会
  • 批准号:
    9411768
  • 财政年份:
    1994
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Mathematical Sciences: One Higher Dimensional Wavelets fromFractal Interpolation Functions: Construction and Applications
数学科学:分形插值函数的一个高维小波:构造和应用
  • 批准号:
    9401352
  • 财政年份:
    1994
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Wavelets: Theory and Application
数学科学:小波:理论与应用
  • 批准号:
    9401785
  • 财政年份:
    1994
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Wavelets and Time-Frequency Analysis
数学科学:小波和时频分析
  • 批准号:
    9401859
  • 财政年份:
    1994
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Conference: "Wavelets and Fractals"
数学科学:会议:“小波和分形”
  • 批准号:
    9319086
  • 财政年份:
    1994
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了