Shape Reconstruction and Other Inverse Problems

形状重建和其他反问题

基本信息

  • 批准号:
    9971010
  • 负责人:
  • 金额:
    $ 44.68万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1999
  • 资助国家:
    美国
  • 起止时间:
    1999-09-01 至 2003-08-31
  • 项目状态:
    已结题

项目摘要

This project seeks to further the state of the/DIV art in the numerical solution of linear and nonlinear inverse/DIV problems. This is a rich area of research/DIV with applications to a great many problems in science and/DIV engineering. In particular, one area of interest in the project is the large class of inverse problems involving/DIV moments. For instance, the problem of reconstructing the shape of a/DIV planar region given its moments is a challenging mathematical and/DIV numerical problem, with applications in computed tomography,/DIV geophysical prospecting, and thermal imaging, to name just a few./DIVGenerally, the solution of (ill-posed) inverse problems/DIV requires the use of advanced computational techniques. For instance,/DIV the efficient solution of linear and nonlinear least squares problems,/DIV and the concept of regularization of such problems are important in many /DIVapplications. It is widely recognized that the choice of a/DIV regularizing functional and the regularization parameters are both/DIV central to the success of a stable numerical inversion approach. The/DIV project is concerned with the numerically stable solution/DIV of ill-posed inverse problems, particularly those involving/DIV moments. A specific problem is that of recovering a 2-dimensional/DIV shape from its moments, involving /DIV(1) formulation and solution of regularized inversion schemes for the/DIV reconstruction of shape from moments, and (2) applying these/DIV algorithms to the reconstruction of gravitational anomalies from/DIV measurements of gravitational fields
该项目旨在进一步发展/DIV技术在线性和非线性逆/DIV问题的数值解中的地位。这是一个丰富的研究领域,应用于科学和工程中的许多问题。特别地,该项目中一个感兴趣的领域是涉及/DIV矩的一大类逆问题。例如,给定一个/DIV平面区域的矩重建问题是一个具有挑战性的数学和/DIV数值问题,应用于计算机断层扫描,/DIV地球物理勘探和热成像,仅举几例。一般来说,求解(不适定)逆问题需要使用先进的计算技术。例如,线性和非线性最小二乘问题的有效解,以及这些问题的正则化概念在许多应用中都很重要。人们普遍认为,正则化泛函和正则化参数的选择对稳定数值反演方法的成功与否至关重要。/DIV项目主要研究不适定逆问题的数值稳定解,特别是涉及/DIV矩的问题。一个具体的问题是从矩中恢复二维/DIV形状,涉及/DIV(1)矩重建形状的正则化反演方案的制定和求解,以及(2)将这些/DIV算法应用于重力场/DIV测量数据的重力异常重建

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gene Golub其他文献

A small note on the scaling of symmetric positive definite semiseparable matrices
  • DOI:
    10.1007/s11075-006-9014-x
  • 发表时间:
    2006-02-09
  • 期刊:
  • 影响因子:
    2.000
  • 作者:
    Raf Vandebril;Gene Golub;Marc Van Barel
  • 通讯作者:
    Marc Van Barel
Estimating the largest singular values of large sparse matrices via modified moments
  • DOI:
    10.1007/bf02142380
  • 发表时间:
    1991-10-01
  • 期刊:
  • 影响因子:
    2.000
  • 作者:
    Michael Berry;Gene Golub
  • 通讯作者:
    Gene Golub

Gene Golub的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gene Golub', 18)}}的其他基金

Special Meeting: Workshop on Algorithms for Modern, Massive Datasets
特别会议:现代海量数据集算法研讨会
  • 批准号:
    0532668
  • 财政年份:
    2005
  • 资助金额:
    $ 44.68万
  • 项目类别:
    Standard Grant
Collaborative Research: Large Scale Regularized Least Squares Problems via Quadratic Eigenvalue Problems
协作研究:通过二次特征值问题解决大规模正则化最小二乘问题
  • 批准号:
    0430617
  • 财政年份:
    2004
  • 资助金额:
    $ 44.68万
  • 项目类别:
    Continuing Grant
Mathematical Sciences/GIG: Graduate Fellowships in Interdisciplinary Research in Mathematical Sciences
数学科学/GIG:数学科学跨学科研究研究生奖学金
  • 批准号:
    9631618
  • 财政年份:
    1997
  • 资助金额:
    $ 44.68万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Numerical Analysis for Time-Dependent Differential Equations
数学科学:时态微分方程的数值分析
  • 批准号:
    9504879
  • 财政年份:
    1996
  • 资助金额:
    $ 44.68万
  • 项目类别:
    Continuing Grant
U.S.-Western Europe Workshop: Iterative Methods, June 11- 14, 1996, Toulouse, France
美国-西欧研讨会:迭代方法,1996 年 6 月 11 日至 14 日,法国图卢兹
  • 批准号:
    9515499
  • 财政年份:
    1996
  • 资助金额:
    $ 44.68万
  • 项目类别:
    Standard Grant
Postdoc: To Develop and Analyze Efficient Parallel Iterative Solvers with Effective Preconditioners that Arise in Solid-Liquid Computational Simulations
博士后:开发和分析固液计算模拟中出现的具有有效预处理器的高效并行迭代求解器
  • 批准号:
    9625705
  • 财政年份:
    1996
  • 资助金额:
    $ 44.68万
  • 项目类别:
    Standard Grant
Mathematical Sciences: International Conference on Scientific Computation and Differential Equations
数学科学:科学计算和微分方程国际会议
  • 批准号:
    9416081
  • 财政年份:
    1995
  • 资助金额:
    $ 44.68万
  • 项目类别:
    Standard Grant
Computational Methods in Linear Algebra Using the Theory of Moments
使用矩论的线性代数计算方法
  • 批准号:
    9505393
  • 财政年份:
    1995
  • 资助金额:
    $ 44.68万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Iterative Methods for Generalized and Modified Eigenvalue Problems on Parallel Computers
数学科学:并行计算机上广义和修正特征值问题的迭代方法
  • 批准号:
    9403899
  • 财政年份:
    1994
  • 资助金额:
    $ 44.68万
  • 项目类别:
    Continuing Grant
Fast Computational Methods and Subspace Algebra in Signal Processing Algorithms and Implementations
信号处理算法和实现中的快速计算方法和子空间代数
  • 批准号:
    9105192
  • 财政年份:
    1991
  • 资助金额:
    $ 44.68万
  • 项目类别:
    Continuing Grant

相似国自然基金

Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
  • 批准号:
    31070748
  • 批准年份:
    2010
  • 资助金额:
    34.0 万元
  • 项目类别:
    面上项目

相似海外基金

Atomistic reconstruction of large biomolecular systems from low-resolution cryo-electron microscopy data - RECKON
利用低分辨率冷冻电子显微镜数据原子重建大型生物分子系统 - RECKON
  • 批准号:
    EP/Y010221/1
  • 财政年份:
    2024
  • 资助金额:
    $ 44.68万
  • 项目类别:
    Fellowship
ZooCELL: Tracing the evolution of sensory cell types in animal diversity: multidisciplinary training in 3D cellular reconstruction, multimodal data ..
ZooCELL:追踪动物多样性中感觉细胞类型的进化:3D 细胞重建、多模态数据方面的多学科培训..
  • 批准号:
    EP/Y037049/1
  • 财政年份:
    2024
  • 资助金额:
    $ 44.68万
  • 项目类别:
    Research Grant
Tracing the evolution of sensory cell types in animal diversity: multidisciplinary training in 3D cellular reconstruction, multimodal data analysis
追踪动物多样性中感觉细胞类型的进化:3D 细胞重建、多模式数据分析的多学科培训
  • 批准号:
    EP/Y037081/1
  • 财政年份:
    2024
  • 资助金额:
    $ 44.68万
  • 项目类别:
    Research Grant
FaVoRe - Fast Volumetric Reconstruction
FaVoRe - 快速体积重建
  • 批准号:
    10083559
  • 财政年份:
    2024
  • 资助金额:
    $ 44.68万
  • 项目类别:
    Collaborative R&D
TrustMRI: Trustworthy and Robust Magnetic Resonance Image Reconstruction with Uncertainty Modelling and Deep Learning
TrustMRI:利用不确定性建模和深度学习进行可靠且鲁棒的磁共振图像重建
  • 批准号:
    EP/X039277/1
  • 财政年份:
    2024
  • 资助金额:
    $ 44.68万
  • 项目类别:
    Research Grant
A self-driven intramedullary nail for the reconstruction of large bone defects
用于重建大骨缺损的自驱动髓内钉
  • 批准号:
    MR/Z503836/1
  • 财政年份:
    2024
  • 资助金额:
    $ 44.68万
  • 项目类别:
    Research Grant
One-step reconstruction of plastic waste back to its constituent monomers (ONESTEP)
将塑料废物一步重建回其组成单体(ONESTEP)
  • 批准号:
    EP/Y003934/1
  • 财政年份:
    2024
  • 资助金额:
    $ 44.68万
  • 项目类别:
    Research Grant
Deep Learning for 3-D reconstruction of heterogeneous molecular structures from Cryo-EM data
利用冷冻电镜数据进行异质分子结构 3D 重建的深度学习
  • 批准号:
    BB/Y513878/1
  • 财政年份:
    2024
  • 资助金额:
    $ 44.68万
  • 项目类别:
    Research Grant
3DFace@Home: A pilot study for robust and highly accurate facial 3D reconstruction from mobile devices for facial growth monitoring at home
3DFace@Home:一项通过移动设备进行稳健且高精度面部 3D 重建的试点研究,用于家庭面部生长监测
  • 批准号:
    EP/X036642/1
  • 财政年份:
    2024
  • 资助金额:
    $ 44.68万
  • 项目类别:
    Research Grant
Ethnography of Archaeology and Architectural Reconstruction
考古民族志与建筑重建
  • 批准号:
    23K25438
  • 财政年份:
    2024
  • 资助金额:
    $ 44.68万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了