Interfacial Phenomena and Pattern Formation
界面现象和图案形成
基本信息
- 批准号:9971043
- 负责人:
- 金额:$ 7.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1999
- 资助国家:美国
- 起止时间:1999-08-01 至 2002-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Interfacial phenomena occur whenever a continuum is present that can exist in at least two different phases (e.g. ice and water) and there is some mechanism that generates or enforces a spatial separation between these two phases (the freezing of the water). The separation boundaries are called interfaces or free boundaries. The objective of the project is to study the time evolution of the boundaries from the following points of view: (i) generation---how interfaces emerge from an initially almost uniform non-stable equilibrium, (ii) propagation---how interfaces move, (iii) nucleation--how phases switch from one to the other, and (iv) pattern formation--how mathematical models can be used to accommodate and predict commonly observed phase patterns such as rotating spirals, oscillating spots, expanding rings, etc. The project will for the most part be carried out on systems of reaction--diffusion equations such as activator-inhibitor models in biology. The main tools used are the theories of partial differential equations and geometric measure. Experimentation through computer simulation will be an integral part of this project in order to stimulate, predict, and validate theoretical studies.Interfacial phenomena are commonplace in physics, chemistry, material science, biology, and even in mathematical finance. In all these areas it is important to predict, and eventually to control, the interfacial dynamics. The research performed with this award will study mathematical model that govern these seemingly complicated yet universal natural phenomena. The work will also lead to the development of new and refined mathematical theories and tools that can handle phenomena of instability and ambiguity. Such phenomena are often observed inthese applications.
只要存在至少存在于两个不同相(如冰和水)中的连续体,就会出现界面现象,并且存在某种机制来产生或强制这两个相之间的空间分离(水的冻结)。分离边界称为界面或自由边界。该项目的目标是从以下角度研究边界的时间演变:(I)生成-界面如何从最初几乎均匀的非稳定平衡中出现,(Ii)传播-界面如何移动,(Iii)成核--相如何从一个相转换到另一个相,以及(Iv)图案形成--如何使用数学模型来适应和预测通常观察到的相图案,例如旋转螺旋、振动点、膨胀环,该项目将主要在反应-扩散方程系统上进行,例如生物学中的激活剂-抑制剂模型。使用的主要工具是偏微分方程组和几何测量理论。通过计算机模拟实验将是这个项目的一个组成部分,以刺激、预测和验证理论研究。界面现象在物理、化学、材料科学、生物学,甚至在数学金融中都是常见的。在所有这些领域,预测并最终控制界面动力学是很重要的。与该奖项一起进行的研究将研究管理这些看似复杂但普遍存在的自然现象的数学模型。这项工作还将导致新的和完善的数学理论和工具的发展,可以处理不稳定和模糊的现象。在这些应用中经常可以观察到这样的现象。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xinfu Chen其他文献
ALLEN-CAHN DYNAMICS AND PHASE TRANSITIONS
ALLEN-CAHN 动力学和相变
- DOI:
- 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
Xinfu Chen - 通讯作者:
Xinfu Chen
Pulsating waves in a dissipative medium with Delta sources on a periodic lattice
周期性晶格上具有 Delta 源的耗散介质中的脉动波
- DOI:
10.1016/j.matpur.2021.04.010 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Xinfu Chen;Xing Liang;J. Tsai - 通讯作者:
J. Tsai
Cobalt-doped ZnO nanoparticles derived from zeolite imidazole frameworks: Synthesis, characterization, and application for the detection of an exhaled diabetes biomarker
源自沸石咪唑骨架的钴掺杂 ZnO 纳米粒子:合成、表征及其在呼出糖尿病生物标志物检测中的应用
- DOI:
10.1016/j.jcis.2020.02.081 - 发表时间:
2020 - 期刊:
- 影响因子:9.9
- 作者:
Shidong Zhu;Lin Xu;Shuo Yang;Xiangyu Zhou;Xinfu Chen;Biao Dong;Xue Bai;Geyu Lu;Hongwei Song - 通讯作者:
Hongwei Song
Lorenz Equations Part I: Existence and Nonexistence of Homoclinic Orbits
- DOI:
10.1137/s0036141094264414 - 发表时间:
1996-07 - 期刊:
- 影响因子:2
- 作者:
Xinfu Chen - 通讯作者:
Xinfu Chen
Re-specification of Affine Term Structure Models: The Linkage to Empirical Investigations
仿射期限结构模型的重新指定:与实证研究的联系
- DOI:
10.1080/1350486x.2014.896510 - 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
T. Huang;B. Sun;Xinfu Chen - 通讯作者:
Xinfu Chen
Xinfu Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xinfu Chen', 18)}}的其他基金
Free Boundary Problems and Interfacial Dynamics
自由边界问题和界面动力学
- 批准号:
1516344 - 财政年份:2015
- 资助金额:
$ 7.4万 - 项目类别:
Continuing Grant
Mathematical Analysis of Interfacial Dynamics
界面动力学的数学分析
- 批准号:
1008905 - 财政年份:2010
- 资助金额:
$ 7.4万 - 项目类别:
Standard Grant
Interfacial Dynamics in Multi-phase Transitions
多相转变中的界面动力学
- 批准号:
0504691 - 财政年份:2005
- 资助金额:
$ 7.4万 - 项目类别:
Standard Grant
Free Boundary Problems and Reaction-Diffusion Systems
自由边界问题和反应扩散系统
- 批准号:
0203991 - 财政年份:2002
- 资助金额:
$ 7.4万 - 项目类别:
Continuing Grant
Lorenz System and Interfacial Dynamics
洛伦兹系统和界面动力学
- 批准号:
9622872 - 财政年份:1996
- 资助金额:
$ 7.4万 - 项目类别:
Continuing Grant
Mathematical Sciences: Free Boundary Problems and Inter- facial Dynamics
数学科学:自由边界问题和界面动力学
- 批准号:
9404773 - 财政年份:1994
- 资助金额:
$ 7.4万 - 项目类别:
Standard Grant
Mathematical Sciences: Thermistor Problems and Interfacial Dynamics
数学科学:热敏电阻问题和界面动力学
- 批准号:
9200459 - 财政年份:1992
- 资助金额:
$ 7.4万 - 项目类别:
Standard Grant
相似海外基金
The position of case pattern alternation phenomenon in the grammar system of modern Japanese: From comparison with other grammatical phenomena
格模式交替现象在现代日语语法体系中的地位——从与其他语法现象的比较来看
- 批准号:
18K00605 - 财政年份:2018
- 资助金额:
$ 7.4万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Building Theories of Scientific Phenomena: Comparing and Integrating Aggregate Pattern-based and Agent-based Computational Approaches
建立科学现象理论:比较和集成基于聚合模式和基于代理的计算方法
- 批准号:
1842375 - 财政年份:2018
- 资助金额:
$ 7.4万 - 项目类别:
Standard Grant
Spontaneous flow pattern formation in fluids --- singularity and large scale flow phenomena
流体中自发流型的形成——奇点和大规模流动现象
- 批准号:
24340016 - 财政年份:2012
- 资助金额:
$ 7.4万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Mechanism of reaction-diffusion systems modeling pattern formation phenomena in biology
反应扩散系统模拟生物学模式形成现象的机制
- 批准号:
23740118 - 财政年份:2011
- 资助金额:
$ 7.4万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Clarification of nonlinear characteristics for polygonal pattern formation phenomena in contact rotating systems and their application to prevention method
接触旋转系统中多边形图案形成现象非线性特性的阐明及其在预防方法中的应用
- 批准号:
21560244 - 财政年份:2009
- 资助金额:
$ 7.4万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of Analysis on Evolving Pattern for Complicated Phenomena
复杂现象演化模式分析的进展
- 批准号:
21224001 - 财政年份:2009
- 资助金额:
$ 7.4万 - 项目类别:
Grant-in-Aid for Scientific Research (S)
A Study on Optimum Design to Suppress Pattern Formation Phenomena of Rolling Contact Systems Caused by Viscoelastic Deformation.
抑制粘弹性变形引起的滚动接触系统花纹形成现象的优化设计研究。
- 批准号:
20560221 - 财政年份:2008
- 资助金额:
$ 7.4万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Concentration Phenomena in Pattern Formation
图案形成中的集中现象
- 批准号:
0653043 - 财政年份:2007
- 资助金额:
$ 7.4万 - 项目类别:
Continuing Grant
Vibration analysis and experimental verification of polygonal pattern formation phenomena caused by time delay
时滞引起的多边形图案形成现象的振动分析与实验验证
- 批准号:
19560234 - 财政年份:2007
- 资助金额:
$ 7.4万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Perfect Countermeasure against Pattern Formation Phenomena Generated in Contact Rotating Systems
针对接触旋转系统中产生的图案形成现象的完美对策
- 批准号:
18360112 - 财政年份:2006
- 资助金额:
$ 7.4万 - 项目类别:
Grant-in-Aid for Scientific Research (B)














{{item.name}}会员




