Concentration Phenomena in Pattern Formation
图案形成中的集中现象
基本信息
- 批准号:0653043
- 负责人:
- 金额:$ 31.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-06-01 至 2011-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Concentration Phenomena in Pattern Formation Abstract of Proposed ResearchWei-Ming NiThis award is to investigate the mathematical analysis of various diffusion-related mechanisms. The P.I. and his collaborators have studied the spike-layer steady states for an activator-inhibitor system in morphogenesis proposed by Gierer and Meinhardt based on the celebrated idea - diffusion-driven instability - of Turing in 1952. Their analysis exploits the gap between the diffusion rates for the two chemical substances, and stability results in various cases have also been obtained. Progress has been made for concentration phenomena on multi-dimensional subsets. Moreover, the complete dynamics of the corresponding kinetic systems has recently been described. However, the dynamics of the original diffusion system is still far from being fully understood. For the spatially inhomogeneous case, stability properties of these diffusion systems can be very different from their autonomous counterparts and this will be investigated. In a slightly different direction it has been noted that the gap between the diffusion rates alone is insufficient to create patterns. Thus, the notion of "cross-diffusion," introduced by theoretical biologists in 1979 in modeling segregation phenomena in population dynamics, will be systematically studied. Cross-diffusion systems have also been used in recent years to model singular phenomena including dendritic growth of bacteria colonies. They are both nonlinear and strongly-coupled in highest order terms, so they are very challenging mathematically. These diffusion and cross-diffusion systems as well as their shadow systems will be studied in both autonomous and non-autonomous cases. Their qualitative behavior as well as their stability properties will also be investigated..This award is to continue a research project that tries to understand, in a mathematically rigorous manner, the phenomena and effects of various diffusion-related mechanisms. The results should improve the modeling of more complicated and/or realistic phenomena in applied sciences, as well as in creating new and significant mathematics. This investigation will study pattern formation resulting from various "concentration phenomena" occurring in cross-diffusion systems, and their shadow systems, in both autonomous and non-autonomous cases, as well as their stability properties. Particular examples include Turing patterns, as in Gierer-Meinhardt's activator-inhibitor systems, models of the regeneration phenomena of hydra in morphogenesis, a nonlinear diffusion system modeling dendritic growth of bacteria colonies, and Lotka-Volterra competition systems with inter-specific population pressures taken into consideration.
图案形成中的集中现象拟研究摘要倪伟明该奖项旨在研究各种扩散相关机制的数学分析。私家侦探1952年,Gierer和Meinhardt基于Turing的扩散驱动不稳定性思想,提出了形态发生中激活剂-抑制剂系统的尖峰层定态。他们的分析利用了两种化学物质的扩散速率之间的差距,并且还获得了各种情况下的稳定性结果。对多维子集上的集中现象的研究已经取得了进展。此外,最近已经描述了相应的动力学系统的完整动力学。然而,原始扩散系统的动力学仍然远未被完全理解。对于空间非齐次的情况下,这些扩散系统的稳定性可以是非常不同的自治同行,这将被调查。在稍微不同的方向上,已经注意到,仅扩散速率之间的差距不足以产生图案。因此,“交叉扩散”的概念,介绍了理论生物学家在1979年在模拟隔离现象的种群动态,将系统地研究。近年来,交叉扩散系统也被用来模拟奇异现象,包括细菌菌落的树枝状生长。它们都是非线性的,并且在最高阶项中是强耦合的,因此它们在数学上是非常具有挑战性的。这些扩散和交叉扩散系统以及它们的阴影系统将在自治和非自治的情况下进行研究。它们的定性行为以及它们的稳定性也将被研究。这个奖项是为了继续一个研究项目,试图理解,在数学上严格的方式,各种扩散相关机制的现象和影响。这些结果将改善应用科学中更复杂和/或现实现象的建模,以及创造新的和重要的数学。这项调查将研究图案的形成所造成的各种“浓度现象”发生在交叉扩散系统,其阴影系统,在自治和非自治的情况下,以及它们的稳定性。具体的例子包括图灵模式,如在Gierer-Meinhardt的激活剂-抑制剂系统中,水螅在形态发生中再生现象的模型,细菌菌落树突状生长的非线性扩散系统模型,以及考虑种间种群压力的Lotka-Volterra竞争系统。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wei-Ming Ni其他文献
The uniqueness of indefinite nonlinear diffusion problem in populaton genetics
群体遗传学中不定非线性扩散问题的独特性
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Fang Li;Kimie Nakashima;Wei-Ming Ni;Fang Li and Kimie Nakashima;中島主恵 - 通讯作者:
中島主恵
Stability and uniqueness of multi-layered solutions
多层解决方案的稳定性和唯一性
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Fang Li;Kimie Nakashima;Wei-Ming Ni;Fang Li and Kimie Nakashima;中島主恵;Kimie Nakashima - 通讯作者:
Kimie Nakashima
On the natural extensions of dynamics with a Siegel or Cremer point
关于具有西格尔或克里默点的动力学的自然延伸
- DOI:
10.1080/10236198.2012.681780 - 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Linlin Su;Kimie Nakashima;Wei-Ming Ni;Kimie Nakashima;Kimie Nakashima;Kimie Nakashima;Kimie Nakashima;Kimie Nakashima;C. Cabrera and T. Kawahira - 通讯作者:
C. Cabrera and T. Kawahira
Preface [Special issue dedicated to the late Professor Rou-Huai Wang on the occasion of his 90th birthday]
序言【纪念已故王柔怀教授九十岁生日特刊】
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
K.C. Chang;M.Y. Chi;Wei-Ming Ni;Z.Q.Wu - 通讯作者:
Z.Q.Wu
非線形解析と可積分系の数理
可积系统的非线性分析和数学
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Linlin Su;Kimie Nakashima;Wei-Ming Ni;Kimie Nakashima - 通讯作者:
Kimie Nakashima
Wei-Ming Ni的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wei-Ming Ni', 18)}}的其他基金
Diffusion, Directed Movement, Spatial and Temporal Heterogeneity in Population Dynamics
种群动态中的扩散、定向运动、时空异质性
- 批准号:
1714487 - 财政年份:2017
- 资助金额:
$ 31.2万 - 项目类别:
Standard Grant
Diffusion in Heterogeneous Environments
异构环境中的扩散
- 批准号:
1210400 - 财政年份:2012
- 资助金额:
$ 31.2万 - 项目类别:
Standard Grant
Concentration Phenomena in Diffusion and Cross-Diffusion Systems
扩散和交叉扩散系统中的集中现象
- 批准号:
0400452 - 财政年份:2004
- 资助金额:
$ 31.2万 - 项目类别:
Continuing Grant
Diffusion and Cross-Diffusion in Pattern Formation
图案形成中的扩散和交叉扩散
- 批准号:
9988635 - 财政年份:2000
- 资助金额:
$ 31.2万 - 项目类别:
Continuing Grant
Mathematical Sciences: Diffusion, Cross-Diffusion and Spike Layers
数学科学:扩散、交叉扩散和尖峰层
- 批准号:
9705639 - 财政年份:1997
- 资助金额:
$ 31.2万 - 项目类别:
Standard Grant
Mathematical Sciences: Nonlinear Partial Differential Equations and Systems
数学科学:非线性偏微分方程和系统
- 批准号:
9401333 - 财政年份:1994
- 资助金额:
$ 31.2万 - 项目类别:
Continuing Grant
Mathematical Sciences: Semilinear Partial Differential Equations and Systems
数学科学:半线性偏微分方程和系统
- 批准号:
9101446 - 财政年份:1991
- 资助金额:
$ 31.2万 - 项目类别:
Continuing Grant
Mathematical Sciences: Conference on Nonlinear Diffusion Equations and Their Equilibrium States, University of Wales,Wales, England, August 20-30, 1989
数学科学:非线性扩散方程及其平衡态会议,威尔士大学,英国威尔士,1989 年 8 月 20-30 日
- 批准号:
8815183 - 财政年份:1989
- 资助金额:
$ 31.2万 - 项目类别:
Standard Grant
Mathematical Sciences: Semilinear Elliptic Equations and Systems
数学科学:半线性椭圆方程和系统
- 批准号:
8801587 - 财政年份:1988
- 资助金额:
$ 31.2万 - 项目类别:
Continuing Grant
Mathematical Sciences: Semilinear Elliptic Equations and Systems
数学科学:半线性椭圆方程和系统
- 批准号:
8601246 - 财政年份:1986
- 资助金额:
$ 31.2万 - 项目类别:
Standard Grant
相似海外基金
The position of case pattern alternation phenomenon in the grammar system of modern Japanese: From comparison with other grammatical phenomena
格模式交替现象在现代日语语法体系中的地位——从与其他语法现象的比较来看
- 批准号:
18K00605 - 财政年份:2018
- 资助金额:
$ 31.2万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Building Theories of Scientific Phenomena: Comparing and Integrating Aggregate Pattern-based and Agent-based Computational Approaches
建立科学现象理论:比较和集成基于聚合模式和基于代理的计算方法
- 批准号:
1842375 - 财政年份:2018
- 资助金额:
$ 31.2万 - 项目类别:
Standard Grant
Spontaneous flow pattern formation in fluids --- singularity and large scale flow phenomena
流体中自发流型的形成——奇点和大规模流动现象
- 批准号:
24340016 - 财政年份:2012
- 资助金额:
$ 31.2万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Mechanism of reaction-diffusion systems modeling pattern formation phenomena in biology
反应扩散系统模拟生物学模式形成现象的机制
- 批准号:
23740118 - 财政年份:2011
- 资助金额:
$ 31.2万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Clarification of nonlinear characteristics for polygonal pattern formation phenomena in contact rotating systems and their application to prevention method
接触旋转系统中多边形图案形成现象非线性特性的阐明及其在预防方法中的应用
- 批准号:
21560244 - 财政年份:2009
- 资助金额:
$ 31.2万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of Analysis on Evolving Pattern for Complicated Phenomena
复杂现象演化模式分析的进展
- 批准号:
21224001 - 财政年份:2009
- 资助金额:
$ 31.2万 - 项目类别:
Grant-in-Aid for Scientific Research (S)
A Study on Optimum Design to Suppress Pattern Formation Phenomena of Rolling Contact Systems Caused by Viscoelastic Deformation.
抑制粘弹性变形引起的滚动接触系统花纹形成现象的优化设计研究。
- 批准号:
20560221 - 财政年份:2008
- 资助金额:
$ 31.2万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Vibration analysis and experimental verification of polygonal pattern formation phenomena caused by time delay
时滞引起的多边形图案形成现象的振动分析与实验验证
- 批准号:
19560234 - 财政年份:2007
- 资助金额:
$ 31.2万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Perfect Countermeasure against Pattern Formation Phenomena Generated in Contact Rotating Systems
针对接触旋转系统中产生的图案形成现象的完美对策
- 批准号:
18360112 - 财政年份:2006
- 资助金额:
$ 31.2万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development and experimental verification of optimum design methods for dynamic absorbers for inhibiting pattern formation phenomena in contact rotating systems
用于抑制接触旋转系统中图案形成现象的动态吸振器优化设计方法的开发和实验验证
- 批准号:
17360108 - 财政年份:2005
- 资助金额:
$ 31.2万 - 项目类别:
Grant-in-Aid for Scientific Research (B)