Statistical Inference for Spatial Data

空间数据的统计推断

基本信息

  • 批准号:
    9971127
  • 负责人:
  • 金额:
    $ 25.2万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    1999
  • 资助国家:
    美国
  • 起止时间:
    1999-07-01 至 2003-06-30
  • 项目状态:
    已结题

项目摘要

9971127This proposal focuses on two major areas in spatial statistics: inference for point processes and prediction and inference for Gaussian random fields. The work in point processes is largely motivated by questions arising in the analysis of an important cosmological catalog of locations along the lines-of-sight between quasars and the Earth of what are known as heavy-element absorbers. This catalog provides a means for assessing the clustering of matter in the universe over very large spatial scales and for describing changes in this clustering as the universe has evolved. The absorber catalog can be most simply modeled as a collection of realizations of a point process observed on a large number of intervals. The fact that the process is observed over many regions rather than one large contiguous region produces some interesting opportunities and challenges for estimating properties of the point process and obtaining valid standard errors for the estimates. For example, one can use resampling methods with the regions as sampling units to obtain confidence statements, although the problem is rather difficult if, as in the absorber catalog, the regions are of different sizes. The proposed work on Gaussian random fields addresses several problems related to prediction when the covariance structure of the random field is partially unknown. Under the natural asymptotic regime of an increasing number of observations in a fixed and bounded domain, only in some very simple cases is it presently possible to prove that predictions based on an estimated covariance structure are asymptotically optimal. Recent work by Putter and Young provide a promising approach for proving such results. This proposal also addresses the design of observation networks for prediction when the covariance structure is unknown. For prediction, the local behavior of the random field is critical and practical experience has demonstrated that evenly spaced observations are poor designs when trying to infer this local behavior. This proposal aims to provide theoretical support to this empirical finding. For example, preliminary work shows that there is tremendous potential for improving the estimation of the fractal dimension of a Gaussian process by taking observations on two grids of very different spacing rather than on a single evenly spaced grid.Spatial statistics is a rapidly growing area of inquiry with broad applicability to the natural and social sciences. Despite its present widespread usage, the theoretical properties of many commonly applied procedures in spatial statistics are poorly understood. The first major topic of this proposal is the analysis of data made up of locations in space. This work is motivated by a cosmological data set that provides important information about the large-scale structure of the universe. Estimating this large-scale structure is a critical component in resolving the fundamental cosmological problem of how the universe evolved from its nearly uniform early state to its present highly clumped state. In addition to the direct application the proposed work has to cosmology, the problems addressed also occur naturally in microscopy. The second major topic in this proposal is the prediction of quantities such as temperature, pollution concentrations and soil characteristics whose levels vary randomly across space. Two specific problems include studying the properties of such predictions when there is uncertainty about how the values of this quantity fluctuate in space and selecting the locations of observations to yield accurate predictions. Spatial prediction is widely used in the atmospheric sciences, pollution monitoring, hydrology and mining.
9971127该提案重点关注空间统计中的两个主要领域:点过程的推理以及高斯随机场的预测和推理。 点过程的工作很大程度上是由分析沿类星体和地球之间的所谓重元素吸收体的视线的重要宇宙学位置目录中出现的问题所引发的。 该目录提供了一种方法,用于在非常大的空间尺度上评估宇宙中物质的聚类,并描述随着宇宙演化而发生的聚类变化。 吸收器目录可以最简单地建模为在大量间隔上观察到的点过程的实现的集合。 事实上,该过程是在许多区域而不是一个大的连续区域中观察到的,这一事实为估计点过程的属性和获得估计的有效标准误差带来了一些有趣的机会和挑战。 例如,可以使用以区域为采样单位的重采样方法来获得置信度陈述,尽管如果像在吸收器目录中那样,区域具有不同的大小,则问题相当困难。 所提出的高斯随机场工作解决了当随机场的协方差结构部分未知时与预测相关的几个问题。 在固定有界域中观测数量不断增加的自然渐进机制下,目前只有在一些非常简单的情况下才有可能证明基于估计协方差结构的预测是渐近最优的。 Putter 和 Young 最近的工作为证明此类结果提供了一种有希望的方法。 该提案还解决了协方差结构未知时用于预测的观测网络的设计。 对于预测,随机场的局部行为至关重要,实践经验表明,在尝试推断这种局部行为时,均匀间隔的观测是糟糕的设计。 该提案旨在为这一实证发现提供理论支持。 例如,初步工作表明,通过在两个间距非常不同的网格而不是在单个均匀间隔的网格上进行观测,在改进高斯过程分形维数的估计方面具有巨大的潜力。空间统计是一个快速发展的研究领域,在自然科学和社会科学中具有广泛的适用性。 尽管其目前被广泛使用,但人们对空间统计中许多常用程序的理论特性知之甚少。 该提案的第一个主要主题是分析由空间位置组成的数据。 这项工作的动机是宇宙学数据集,该数据集提供了有关宇宙大尺度结构的重要信息。 估计这种大尺度结构是解决宇宙学基本问题的关键组成部分,即宇宙如何从几乎均匀的早期状态演化到目前的高度聚集状态。 除了所提出的工作直接应用于宇宙学之外,所解决的问题也自然出现在显微镜中。 该提案的第二个主要主题是预测温度、污染浓度和土壤特征等数量,这些数量的水平在空间中随机变化。 两个具体问题包括:当该量的值如何在空间中波动存在不确定性时,研究此类预测的属性;以及选择观测位置以产生准确的预测。 空间预测广泛应用于大气科学、污染监测、水文和采矿等领域。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Stein其他文献

Router-Based Brokering for Surrogate Discovery in Edge Computing
用于边缘计算中代理发现的基于路由器的代理
Evaluation and Comparison of Audio Chroma Feature Extraction Methods
音频色度特征提取方法的评价与比较
Human Aspects of Information Ergonomics
信息工效学的人性化
  • DOI:
    10.1007/978-3-642-25841-1_3
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Herczeg;Michael Stein
  • 通讯作者:
    Michael Stein
W64 - The use of the Pittsburgh Sleep Quality Index to Screen for Different Types of Sleep Disturbance in Opioid Treatment Programs
W64 - 使用匹兹堡睡眠质量指数在阿片类药物治疗项目中筛查不同类型的睡眠障碍
  • DOI:
    10.1016/j.drugalcdep.2024.112006
  • 发表时间:
    2025-02-01
  • 期刊:
  • 影响因子:
    3.600
  • 作者:
    Connie Hsaio;Kimberly DiMeola;Kelly Walker;Michael Stein;Klar Yaggi;Declan Barry
  • 通讯作者:
    Declan Barry
Disseminated synovial chondromatosis of the knee treated by open radical synovectomy using staged combined anterior and posterior approaches: a case report
  • DOI:
    10.1186/s13256-025-05087-4
  • 发表时间:
    2025-04-02
  • 期刊:
  • 影响因子:
    0.800
  • 作者:
    Sileshi Serebe Zeleke;Koyachew Abate Nigussie;Yeab Mulat Mesfin;Wodaje Mesele Fentie;Michael Stein;Daniel Kassie Molla
  • 通讯作者:
    Daniel Kassie Molla

Michael Stein的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Stein', 18)}}的其他基金

Collaborative Research: RNMS: Statistical Methods for Atmospheric and Oceanic Sciences
合作研究:RNMS:大气和海洋科学统计方法
  • 批准号:
    1106974
  • 财政年份:
    2011
  • 资助金额:
    $ 25.2万
  • 项目类别:
    Continuing Grant
3rd Midwest Statistics Research Colloquium
第三届中西部统计研究研讨会
  • 批准号:
    0960590
  • 财政年份:
    2009
  • 资助金额:
    $ 25.2万
  • 项目类别:
    Standard Grant
Second Midwest Statistics Research Colloquium
第二届中西部统计研究研讨会
  • 批准号:
    0852523
  • 财政年份:
    2009
  • 资助金额:
    $ 25.2万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Statistical Inference for Large Spatial and Space-Time Datasets
数学科学:大型空间和时空数据集的统计推断
  • 批准号:
    9504470
  • 财政年份:
    1995
  • 资助金额:
    $ 25.2万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: US - Nigeria Joint Symposium on Algebraic K-Theory
数学科学:美国-尼日利亚代数 K 理论联合研讨会
  • 批准号:
    8619642
  • 财政年份:
    1987
  • 资助金额:
    $ 25.2万
  • 项目类别:
    Standard Grant
Mathematical Sciences Postdoctoral Research Fellowship
数学科学博士后研究奖学金
  • 批准号:
    8605766
  • 财政年份:
    1986
  • 资助金额:
    $ 25.2万
  • 项目类别:
    Fellowship Award
Mathematical Sciences: Cohomology of Groups and Algebraic K-Theory
数学科学:群上同调和代数 K 理论
  • 批准号:
    8319166
  • 财政年份:
    1984
  • 资助金额:
    $ 25.2万
  • 项目类别:
    Standard Grant
Algebraic K-Theory
代数K理论
  • 批准号:
    7921511
  • 财政年份:
    1980
  • 资助金额:
    $ 25.2万
  • 项目类别:
    Standard Grant
Commutative Algebra and Algebraic K-Theory
交换代数和代数 K 理论
  • 批准号:
    8000929
  • 财政年份:
    1980
  • 资助金额:
    $ 25.2万
  • 项目类别:
    Continuing Grant

相似海外基金

Collaborative Research: Statistical Inference for High-dimensional Spatial-Temporal Process Models
合作研究:高维时空过程模型的统计推断
  • 批准号:
    2113779
  • 财政年份:
    2021
  • 资助金额:
    $ 25.2万
  • 项目类别:
    Standard Grant
Collaborative Research: Statistical Inference for High-dimensional Spatial-Temporal Process Models
合作研究:高维时空过程模型的统计推断
  • 批准号:
    2113778
  • 财政年份:
    2021
  • 资助金额:
    $ 25.2万
  • 项目类别:
    Standard Grant
Theoretical development on statistical inference for local complex structure of temporal and spatial data
时空数据局部复杂结构统计推断的理论发展
  • 批准号:
    20K11719
  • 财政年份:
    2020
  • 资助金额:
    $ 25.2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Effective inference and selection of statistical models to represent latent structure in spatial data
有效推断和选择统计模型来表示空间数据中的潜在结构
  • 批准号:
    26330042
  • 财政年份:
    2014
  • 资助金额:
    $ 25.2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Statistical inference of semi-parametric varying coefficients for spatial data and its appication to survival data
空间数据半参数变系数的统计推断及其在生存数据中的应用
  • 批准号:
    26330043
  • 财政年份:
    2014
  • 资助金额:
    $ 25.2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Statistical inference for inhomogeneous spatial Markov point processes
非齐次空间马尔可夫点过程的统计推断
  • 批准号:
    21700319
  • 财政年份:
    2009
  • 资助金额:
    $ 25.2万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Statistical Inference on Spatial Random Network
空间随机网络的统计推断
  • 批准号:
    10680326
  • 财政年份:
    1998
  • 资助金额:
    $ 25.2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Mathematical Sciences: Statistical Inference for Large Spatial and Space-Time Datasets
数学科学:大型空间和时空数据集的统计推断
  • 批准号:
    9504470
  • 财政年份:
    1995
  • 资助金额:
    $ 25.2万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Statistical Inference for Some Dynamic and Spatial Phenomena
数学科学:一些动态和空间现象的统计推断
  • 批准号:
    9300002
  • 财政年份:
    1993
  • 资助金额:
    $ 25.2万
  • 项目类别:
    Continuing Grant
Statistical inference in spatial processes and image analysis
空间过程和图像分析中的统计推断
  • 批准号:
    8211-1990
  • 财政年份:
    1992
  • 资助金额:
    $ 25.2万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了