Strong Shift Equivalence Theory
强平移等价理论
基本信息
- 批准号:9971501
- 负责人:
- 金额:$ 7.32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1999
- 资助国家:美国
- 起止时间:1999-08-01 至 2002-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9971501Wagoner Shift dynamical systems and Markov chains are useful models forphenomena in areas ranging from discrete time smooth dynamics, tostatistical mechanics, to information and coding theory. In practice,there are generally many ways of describing or constructing shiftsystems that have essentially the same dynamical behaviour. Even inthe one-dimensional case, effectively recognizing when two concretemodels are equivalent is a fundamental open problem. Another naturaland related problem is to study the different equivalencies orsymmetries between two systems. Symmetries of a given system areoften called reversible cellular automata. One approach to theclassification and symmetry group problems for one-dimensional shiftsystems that has been fruitful involves strong shift equivalencetheory. In recent years, this has led to progress on the ShiftEquivalence Problem. This is a tantalizing question in symbolicdynamics that can be posed in elementary terms using matrices andgraphs and that has been open since since 1974. It has led to a newtype of positive algebraic K-theory for ordered rings by way of theusual row and column operations on matrices but with certaininequalities imposed. Strong shift equivalence theory is a combination of algebra andtopology that grew out of the dynamics of systems known as shiftsystems and their symmetry groups. It turns out to have unexpectedand interesting connections with areas of mathematics outsidedynamics, such as algebraic K-theory, cyclic homology, and topologicalquantum field theory. Wagoner will continue to explore these newdevelopments.***
[9971501] wagoner Shift动力系统和Markov链是研究从离散时间光滑动力学、统计力学到信息和编码理论等领域现象的有用模型。在实践中,通常有许多描述或构造具有本质上相同动力学行为的移位系统的方法。即使在一维情况下,有效地识别两个具体模型何时是等效的也是一个基本的开放性问题。另一个与自然有关的问题是研究两个系统之间不同的等价或对称性。给定系统的对称性通常称为可逆元胞自动机。研究一维位移系统的分类和对称群问题的一种卓有成效的方法涉及强位移等价理论。近年来,这导致了漂移等效性问题的进展。这是符号动力学中一个诱人的问题,可以用矩阵和图的初等形式提出,自1974年以来一直开放。它通过对矩阵进行通常的行、列运算,但施加了一定的不等式,得到了一种新的有序环的正代数k理论。强位移等价理论是代数和拓扑学的结合,它产生于被称为位移系统及其对称群的系统动力学。事实证明,它与动力学以外的数学领域有着意想不到的、有趣的联系,比如代数k理论、循环同调和拓扑量子场论。瓦格纳将继续探索这些新的发展
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John Wagoner其他文献
John Wagoner的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John Wagoner', 18)}}的其他基金
Mathematical Sciences: Shift Dynamics, Symmetry and and Algebriac K-Theory
数学科学:位移动力学、对称性和代数 K 理论
- 批准号:
9322498 - 财政年份:1994
- 资助金额:
$ 7.32万 - 项目类别:
Continuing Grant
Mathematical Sciences: Symmetry Groups in Dynamics and Topology
数学科学:动力学和拓扑中的对称群
- 批准号:
9102959 - 财政年份:1991
- 资助金额:
$ 7.32万 - 项目类别:
Continuing Grant
Mathematical Sciences: Symmetry Groups in Dynamics and Topology
数学科学:动力学和拓扑中的对称群
- 批准号:
8801333 - 财政年份:1988
- 资助金额:
$ 7.32万 - 项目类别:
Continuing Grant
Mathematical Sciences: Algebraic K-Theory: Automorphism Groups and Regulators
数学科学:代数 K 理论:自同构群和调节子
- 批准号:
8502351 - 财政年份:1985
- 资助金额:
$ 7.32万 - 项目类别:
Continuing Grant
相似国自然基金
基于自适应Q-shift双树复小波分析的碳纤维复合材料缺陷识别
- 批准号:61363050
- 批准年份:2013
- 资助金额:47.0 万元
- 项目类别:地区科学基金项目
相似海外基金
Angular Goos-Hanchen Shift Spectroscopy via Mid-Infrared Photothermal Effect
通过中红外光热效应进行角古斯-汉欣位移光谱
- 批准号:
24K17628 - 财政年份:2024
- 资助金额:
$ 7.32万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Can megafauna shift the carbon and surface radiation budgets of the Arctic?
巨型动物群能否改变北极的碳和地表辐射预算?
- 批准号:
NE/W00089X/2 - 财政年份:2024
- 资助金额:
$ 7.32万 - 项目类别:
Research Grant
Trait-shift induced interaction modification: How individual variation affects ecosystem stability
性状转变引起的相互作用修改:个体变异如何影响生态系统稳定性
- 批准号:
2330970 - 财政年份:2024
- 资助金额:
$ 7.32万 - 项目类别:
Standard Grant
A paradigm shift for predictions of freshwater harmful cyanobacteria blooms
淡水有害蓝藻水华预测的范式转变
- 批准号:
DP240100269 - 财政年份:2024
- 资助金额:
$ 7.32万 - 项目类别:
Discovery Projects
GW-SHIFT: Great Western Supercluster of Hydrogen Impact for Future Technologies
GW-SHIFT:氢对未来技术影响的大西部超星系团
- 批准号:
EP/Y023994/1 - 财政年份:2024
- 资助金额:
$ 7.32万 - 项目类别:
Research Grant
Reconfigurable Intelligent Surfaces 2.0 for 6G: Beyond Diagonal Phase Shift Matrices
适用于 6G 的可重构智能表面 2.0:超越对角相移矩阵
- 批准号:
EP/Y004086/1 - 财政年份:2024
- 资助金额:
$ 7.32万 - 项目类别:
Research Grant
Mindset Dynamics: Using the Perception Clarity Methodology (PCM) to shift perceptions
心态动态:使用感知清晰度方法 (PCM) 来转变认知
- 批准号:
ES/Y011015/1 - 财政年份:2024
- 资助金额:
$ 7.32万 - 项目类别:
Research Grant
The Higman-Thompson groups, their generalisations, and automorphisms of shift spaces
希格曼-汤普森群、它们的概括以及移位空间的自同构
- 批准号:
EP/X02606X/1 - 财政年份:2024
- 资助金额:
$ 7.32万 - 项目类别:
Fellowship
Transcendental fiber functors, shift of argument algebras and Riemann-Hilbert correspondence for q-difference equations
q 差分方程的超越纤维函子、变元代数平移和黎曼-希尔伯特对应
- 批准号:
2302568 - 财政年份:2023
- 资助金额:
$ 7.32万 - 项目类别:
Continuing Grant














{{item.name}}会员




