Mathematical Issues in the Modeling and Simulation of Self-Consistent Charge Particle Transport
自洽电荷粒子输运建模与仿真中的数学问题
基本信息
- 批准号:9971779
- 负责人:
- 金额:$ 9.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1999
- 资助国家:美国
- 起止时间:1999-08-01 至 2002-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research concerns mathematical problems in the theory of self-consistent charged-particle transport systems at different scales.Of particular interest is to address the mathematical issues in kinetictransport under strong forcing (a high built-in electric field due to inhomogeneities of the flow region), and the hierarchy of anisotropic hydrodynamic models derived under these conditions. These models arise naturally when non-equilibrium current flow in heterogeneous structures such as semiconductor devices is studied. Similar models are used to describe biological transport in ionic channels, due to significant electrical activity through cellular membranes. One of the new aspects of the planned research is the mathematical and computational understanding of transition layers that involve the linking of scales through kinetic and macroscopic levels for transport models, both under low and high electric field effects. In both cases, analytical studies are to be complemented by numerical simulationof solutions of the corresponding model equations. This research addresses mathematical models that are used to describeelectron and ion transport in semiconductors and in biological membranes.One of the main challenges comes from the fact that in these phenomena, processes that occur at very different length and time scale are coupled and influence each other. The mathematical work will lead to faster computational methods for the simulation of such phenomena which are at the same time more accurate. Technological areas which are as different as microelectronics and pharmacology will ultimately benefit from this work.
本研究关注不同尺度下自洽带电粒子输运系统理论中的数学问题,特别关注强强迫(由于流动区域的不均匀性导致的高内建电场)下动力学输运中的数学问题,以及在这些条件下推导的各向异性流体动力学模型的层次。这些模型自然出现时,在异质结构,如半导体器件的非平衡电流流动的研究。类似的模型用于描述离子通道中的生物运输,这是由于通过细胞膜的显著电活性。 计划研究的新方面之一是对过渡层的数学和计算理解,其中涉及在低电场和高电场效应下通过动力学和宏观水平连接传输模型的尺度。在这两种情况下,分析研究是由相应的模型方程的解决方案的数值模拟来补充。 本研究致力于描述半导体和生物膜中电子和离子传输的数学模型,其中一个主要挑战来自于这样一个事实,即在这些现象中,发生在非常不同的长度和时间尺度上的过程是相互耦合和影响的。 数学工作将导致更快的计算方法来模拟这种现象,同时更准确。像微电子学和药理学这样不同的技术领域最终将从这项工作中受益。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Irene Gamba其他文献
DSMC versus WENO-BTE: A double gate MOSFET example
- DOI:
10.1007/s10825-006-0035-4 - 发表时间:
2006-12-09 - 期刊:
- 影响因子:2.500
- 作者:
Maria José Cáceres;José Antonio Carrillo;Irene Gamba;Armando Majorana;Chi-Wang Shu - 通讯作者:
Chi-Wang Shu
Irene Gamba的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Irene Gamba', 18)}}的其他基金
Collisional Kinetic Transport: Analysis and Numerical Methods
碰撞动力学输运:分析和数值方法
- 批准号:
2009736 - 财政年份:2020
- 资助金额:
$ 9.1万 - 项目类别:
Standard Grant
Non-local Kinetic Collisional Transport: Analysis and Numerical Methods
非局部动力学碰撞传输:分析和数值方法
- 批准号:
1715515 - 财政年份:2017
- 资助金额:
$ 9.1万 - 项目类别:
Standard Grant
Pan-American Conference on Differential Equations and Non-linear Analysis
泛美微分方程和非线性分析会议
- 批准号:
1446125 - 财政年份:2015
- 资助金额:
$ 9.1万 - 项目类别:
Standard Grant
The Kinetics of Interacting Particle Systems: Theory and Numerical Methods
相互作用粒子系统的动力学:理论和数值方法
- 批准号:
1413064 - 财政年份:2014
- 资助金额:
$ 9.1万 - 项目类别:
Continuing Grant
Collaborative Research: RNMS: Kinetic Description of Emerging Challenges in Multiscale Problems of Natural Sciences
合作研究:RNMS:自然科学多尺度问题中新挑战的动力学描述
- 批准号:
1107465 - 财政年份:2012
- 资助金额:
$ 9.1万 - 项目类别:
Continuing Grant
Accurate high performance computing for nonlinear collisional kinetic theory
非线性碰撞动力学理论的精确高性能计算
- 批准号:
1217154 - 财政年份:2012
- 资助金额:
$ 9.1万 - 项目类别:
Standard Grant
Kinetic transport and dynamics in complex interacting systems: analysis and simulations
复杂相互作用系统中的动能传输和动力学:分析和模拟
- 批准号:
1109625 - 财政年份:2011
- 资助金额:
$ 9.1万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Kinetic Description of Multiscale Phenomena: Modeling, Theory and Computation
FRG:协作研究:多尺度现象的动力学描述:建模、理论和计算
- 批准号:
0757450 - 财政年份:2008
- 资助金额:
$ 9.1万 - 项目类别:
Standard Grant
Statistical transport of complex particle systems
复杂粒子系统的统计传输
- 批准号:
0807712 - 财政年份:2008
- 资助金额:
$ 9.1万 - 项目类别:
Standard Grant
EMSW21-RTG - Program in Applied and Computational Analysis
EMSW21-RTG - 应用和计算分析程序
- 批准号:
0636586 - 财政年份:2007
- 资助金额:
$ 9.1万 - 项目类别:
Continuing Grant
相似海外基金
EAGER GERMINATION: Computational Modeling from Scenario Development: A Pedagogy for Generating Novel Research Questions to Address Critical Societal Issues
渴望萌发:情景开发的计算模型:产生新的研究问题以解决关键社会问题的教学法
- 批准号:
2203623 - 财政年份:2022
- 资助金额:
$ 9.1万 - 项目类别:
Standard Grant
statistical methods for some emerging issues in modeling latent variables
潜在变量建模中一些新出现问题的统计方法
- 批准号:
RGPIN-2015-04746 - 财政年份:2020
- 资助金额:
$ 9.1万 - 项目类别:
Discovery Grants Program - Individual
statistical methods for some emerging issues in modeling latent variables
潜在变量建模中一些新出现问题的统计方法
- 批准号:
RGPIN-2015-04746 - 财政年份:2019
- 资助金额:
$ 9.1万 - 项目类别:
Discovery Grants Program - Individual
statistical methods for some emerging issues in modeling latent variables
潜在变量建模中一些新出现问题的统计方法
- 批准号:
RGPIN-2015-04746 - 财政年份:2018
- 资助金额:
$ 9.1万 - 项目类别:
Discovery Grants Program - Individual
statistical methods for some emerging issues in modeling latent variables
潜在变量建模中一些新出现问题的统计方法
- 批准号:
RGPIN-2015-04746 - 财政年份:2017
- 资助金额:
$ 9.1万 - 项目类别:
Discovery Grants Program - Individual
Emerging Issues in Modeling Longitudinal Observations with Censoring
带有审查的纵向观测建模中出现的新问题
- 批准号:
1756078 - 财政年份:2017
- 资助金额:
$ 9.1万 - 项目类别:
Continuing Grant
Uniting field study and modeling study for breaking through scale issues in rainfall-runoff processes
结合实地研究和模型研究突破降雨径流过程尺度问题
- 批准号:
16K06501 - 财政年份:2016
- 资助金额:
$ 9.1万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
statistical methods for some emerging issues in modeling latent variables
潜在变量建模中一些新出现问题的统计方法
- 批准号:
RGPIN-2015-04746 - 财政年份:2016
- 资助金额:
$ 9.1万 - 项目类别:
Discovery Grants Program - Individual
RAPID: Tackling Critical Issues in the Ebola Epidemic through Modeling: Viral Evolution
RAPID:通过建模解决埃博拉疫情中的关键问题:病毒进化
- 批准号:
1521049 - 财政年份:2015
- 资助金额:
$ 9.1万 - 项目类别:
Standard Grant
statistical methods for some emerging issues in modeling latent variables
潜在变量建模中一些新出现问题的统计方法
- 批准号:
RGPIN-2015-04746 - 财政年份:2015
- 资助金额:
$ 9.1万 - 项目类别:
Discovery Grants Program - Individual