New Methods for the Simulation and Analysis of Waves
波浪模拟和分析的新方法
基本信息
- 批准号:9971772
- 负责人:
- 金额:$ 9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1999
- 资助国家:美国
- 起止时间:1999-07-01 至 2002-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
New Methods for the Simulation and Analysis of Waves Thomas Hagstrom 9971772We will develop, analyze, implement and apply new methods for the solutionof wave propagation problems. Our primary focus is on numerical techniques which can efficiently and reliably utilize the capabilities of modern computers to simulate problems whose scale has hitherto precluded their detailed study. A large scale wave propagation problem will generally be given in an extended spatial and/or temporal domain. In engineering applications, the domain will also usually involve bodies with complex shapes. These features all pose difficult challenges to numerical algorithms. The radiation of energy to the far field is a feature of most wave systems and is associated with large spatial domains. To make computational ssolutions feasible, the domain must be artificially truncated. This truncation introduces errors which have been difficult to estimate or reduce. In recent years, we, along with other researchers, have developed new techniques for imposing accurate truncations, which solve this problem in some special but important cases. As part of this project, we will extend the applicability of these new methods. Long time simulations also make special demands on the accuracy of numerical approximations. In particular, small inaccuracies in the wave speeds or the effects of numerical damping will generally accumulate to produce large errors. Therefore, highly accurate methods must be used. However, these are typically difficult to apply in complex geometries. We will work on the development and analysis of new methods with high orders of accuracy which can be more easily utilized near bodies with complicated shapes. Finally, we will study some basicproblems related to the existence, smoothness, and asymptotic approximability of solutions to the compressible Navier-Stokes equations, which describe the motion of most common liquids and gases. We are particularly interested in flows which are slow in comparison with the speed of sound. Such flows are typically modeled by the incompressible Navier-Stokes equations, whose mathematical theory, though still quite incomplete, is better developed. We, however, retain the compressible effects, and study both theoretically and by simulation the relationship between the solutions of the two systems. In our work we focus on some specific physical systems, primarily from thefields of acoustics and fluid dynamics. As such, we hope to enhance our capability to use high-performance computing to predict the production andinteraction of sound with fluid flows. However, due to the general importance of wave theory and the underlying unity of its mathematical description, most of our results will be directly applicable in diverse areas such as electromagnetism and elasticity. In the long term, an improved capability to simulate waves will have important applications including the reduction of aircraft noise, the improvement of radar and sonar imaging, the predictabilityof the effects of earthquakes, and the design of better communications systems.
波浪模拟与分析的新方法 托马斯·哈格斯特龙 9971772我们将开发,分析,实施和应用新的方法来解决波传播问题。我们的主要重点是数值技术,可以有效地和可靠地利用现代计算机的能力来模拟问题的规模迄今为止,排除了他们的详细研究。 大规模波传播问题通常在扩展的空间和/或时间域中给出。在工程应用中,该领域通常还涉及具有复杂形状的物体。这些特征都对数值算法提出了困难的挑战。能量向远场的辐射是大多数波系统的特征,并且与大的空间域相关联。为了使计算解可行,域必须被人为截断。这种截断引入了难以估计或减少的误差。近年来,我们沿着其他研究人员,发展了一些新的精确截断技术,解决了一些特殊但重要的情况下的这个问题。作为该项目的一部分,我们将扩展这些新方法的适用性。长时间的模拟也对数值近似的精度提出了特殊的要求。特别是,波速的小误差或数值阻尼的影响通常会累积产生大的误差。因此,必须使用高度精确的方法。然而,这些通常难以应用于复杂的几何形状。我们将致力于开发和分析具有高精度的新方法,这些方法可以更容易地在形状复杂的物体附近使用。最后,我们将研究与可压缩Navier-Stokes方程解的存在性、光滑性和渐近逼近性有关的一些基本问题,这些方程描述了最常见的液体和气体的运动。我们特别感兴趣的是与声速相比慢的流动。这种流动通常由不可压缩的纳维尔-斯托克斯方程建模,其数学理论虽然还很不完善,但发展得更好。然而,我们保留了可压缩效应,并从理论和模拟两个系统的解决方案之间的关系进行研究。 在我们的工作中,我们专注于一些特定的物理系统,主要来自声学和流体动力学领域。因此,我们希望提高我们使用高性能计算来预测声音与流体流动的产生和相互作用的能力。然而,由于波动理论的普遍重要性及其数学描述的基本统一性,我们的大多数结果将直接适用于不同的领域,如电磁学和弹性。从长远来看,提高模拟波浪的能力将有重要的应用,包括减少飞机噪音,改进雷达和声纳成像,预测地震的影响,以及设计更好的通信系统。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thomas Hagstrom其他文献
Energy-Conserving Hermite Methods for Maxwell’s Equations
- DOI:
10.1007/s42967-024-00469-9 - 发表时间:
2025-02-26 - 期刊:
- 影响因子:1.400
- 作者:
Daniel Appelö;Thomas Hagstrom;Yann-Meing Law - 通讯作者:
Yann-Meing Law
Perfectly matched layers in photonics computations: 1D and 2D nonlinear coupled mode equations
- DOI:
10.1016/j.jcp.2006.10.002 - 发表时间:
2007-05-01 - 期刊:
- 影响因子:
- 作者:
Tomáš Dohnal;Thomas Hagstrom - 通讯作者:
Thomas Hagstrom
Locating Discontinuities of a Bounded Function by the Partial Sums of Its Fourier Series
- DOI:
10.1023/a:1023204330916 - 发表时间:
1999-12-01 - 期刊:
- 影响因子:3.300
- 作者:
George Kvernadze;Thomas Hagstrom;Henry Shapiro - 通讯作者:
Henry Shapiro
High-order discretization of a stable time-domain integral equation for 3D acoustic scattering
- DOI:
10.1016/j.jcp.2019.109047 - 发表时间:
2020-02-01 - 期刊:
- 影响因子:
- 作者:
Alex Barnett;Leslie Greengard;Thomas Hagstrom - 通讯作者:
Thomas Hagstrom
Thomas Hagstrom的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Thomas Hagstrom', 18)}}的其他基金
Robust and Efficient Numerical Methods for Wave Equations in the Time Domain: Nonlinear and Multiscale Problems
时域波动方程的鲁棒高效数值方法:非线性和多尺度问题
- 批准号:
2309687 - 财政年份:2023
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Numerical Methods for Waves: Nonlocal, Nonlinear, and Multiscale Systems
波的数值方法:非局部、非线性和多尺度系统
- 批准号:
2012296 - 财政年份:2020
- 资助金额:
$ 9万 - 项目类别:
Continuing Grant
Robust High-Order Methods for Wave Equations in the Time Domain
时域波动方程的鲁棒高阶方法
- 批准号:
1418871 - 财政年份:2014
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Collaborative Research: Simulation and Analysis of Turbulent Jet Noise Using Arbitrary-Order Hermite Methods
合作研究:使用任意阶 Hermite 方法模拟和分析湍流射流噪声
- 批准号:
0904773 - 财政年份:2009
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Numerical Methods for Wave Propagation Problems: Efficient Resolution of Multiple Scales
波传播问题的数值方法:多尺度的有效解决
- 批准号:
0929241 - 财政年份:2008
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Numerical Methods for Wave Propagation Problems: Efficient Resolution of Multiple Scales
波传播问题的数值方法:多尺度的有效解决
- 批准号:
0610067 - 财政年份:2006
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Numerical Methods for Multiple Scale Problems in Wave Propagation: Efficient Approximation of Integral Operators in the Time Domain
波传播中多尺度问题的数值方法:时域积分算子的有效逼近
- 批准号:
0306285 - 财政年份:2003
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Scientific Computing Research Environments in the Mathematical Sciences
数学科学中的科学计算研究环境
- 批准号:
9977396 - 财政年份:1999
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Mathematical Sciences: Computational Analysis of Multiple Scales Problems in Wave Propagation
数学科学:波传播中多尺度问题的计算分析
- 批准号:
9600146 - 财政年份:1996
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Scientific Computing Research Developments for the Mathematical Sciences
数学科学的科学计算研究进展
- 批准号:
9508285 - 财政年份:1995
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
New Optimisation Methods for Scale-Resolving Turbulent Flow Simulation
尺度解析湍流模拟的新优化方法
- 批准号:
2898644 - 财政年份:2020
- 资助金额:
$ 9万 - 项目类别:
Studentship
New Simulation Methods for Levy Processes and Related Distributions
Levy 过程和相关分布的新模拟方法
- 批准号:
1720218 - 财政年份:2017
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
SI2-SSE: Infrastructure Enabling Broad Adoption of New Methods That Yield Orders-of-Magnitude Speedup of Molecular Simulation Averaging
SI2-SSE:基础设施支持广泛采用新方法,使分子模拟平均速度提高几个数量级
- 批准号:
1739145 - 财政年份:2017
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Extreme rainfall forecasting: new statistical simulation and Big Data methods for making sense of rainfall radar and rain gauges
极端降雨预报:新的统计模拟和大数据方法,用于理解降雨雷达和雨量计
- 批准号:
2220795 - 财政年份:2017
- 资助金额:
$ 9万 - 项目类别:
Studentship
Development of real-scale simulation methods for nanostructure conductors and creation of new functions
开发纳米结构导体的真实尺度模拟方法并创建新功能
- 批准号:
15K04619 - 财政年份:2015
- 资助金额:
$ 9万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
New Simulation Methods for Accelerated Mixed-Signal Simulation
加速混合信号仿真的新仿真方法
- 批准号:
247945085 - 财政年份:2013
- 资助金额:
$ 9万 - 项目类别:
Research Grants
New Methods of Fault Simulation and Location for Smart Grids Based on Synchronized Measurements
基于同步测量的智能电网故障模拟与定位新方法
- 批准号:
1128383 - 财政年份:2012
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Developing new visual analysis methods to be integrated into simulation processes, focusing on the exploration of cell biological systems in space and time
开发新的视觉分析方法以集成到模拟过程中,重点探索细胞生物系统的空间和时间
- 批准号:
202784448 - 财政年份:2011
- 资助金额:
$ 9万 - 项目类别:
Priority Programmes