Numerical Methods for Multiple Scale Problems in Wave Propagation: Efficient Approximation of Integral Operators in the Time Domain
波传播中多尺度问题的数值方法:时域积分算子的有效逼近
基本信息
- 批准号:0306285
- 负责人:
- 金额:$ 12.82万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-06-01 至 2006-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Many of the main obstacles to the development of efficient and reliable computational tools for simulating waves are rooted in the multiple spatial scales which are universally present. The focus of this project is the detailed study of select questions which are relevant for overcoming these obstacles. A unifying feature of the questions addressed is that all involve the efficient approximate evaluation of integral operators in space and time. Although the work, if successful, has the potential to impact numerous scientific and engineering disciplines, the efforts will be directed towards problems in aeroacoustics and electromagnetics. Precisely, the following will be developed: (i) Accurate, efficient and reliable computational domain truncation methods, allowing the direct simulations to take place only in regions where the medium is complex or where nonlinear effects are important; (ii) Efficient time-stepping methods allowing the simple treatment of concentrated regions of high resolution or geometric detail.Wave propagation problems are of fundamental importance in many areas of applied science and technology. They encompass a wide range of physics (electromagnetics, fluid and solid mechanics), but share essential mathematical properties. The defining characteristic of a wave is its ability to travel long distances relative to its basic dimension, the wavelength, carrying detailed information about the medium through which it has traveled. For this reason, waves are the primary method by which we probe nature and communicate. A consequence of this fundamental characteristic is that wave propagation problems typically involve disparate spatial scales - from the geometrical details of scatterers through a range of wavelengths to the propagation distances. These multiple scales, in turn, lead to difficulties in computational analysis. In particular, their uniform resolution would lead to a prohibitive number of degrees of freedom. Thus methods must be developed which can concentrate computational resources only where they are needed, providing the primary motivation for the problems we consider. In addition to this analysis, the plan is to collaborate with researchers who are building software for simulating jet noise, electromagnetic scattering in complex structures, as well as general-purpose wave propagation problems. Thus any positive developments from the research can come into use as rapidly as possible.
开发用于模拟波浪的有效和可靠的计算工具的许多主要障碍植根于普遍存在的多个空间尺度。该项目的重点是详细研究与克服这些障碍有关的选定问题。一个统一的特点,所解决的问题是,所有涉及到有效的近似评估的积分算子在空间和时间。虽然这项工作,如果成功的话,有可能影响许多科学和工程学科,努力将针对航空声学和电磁学的问题。准确地说,将发展以下方面:(i)准确、有效和可靠的计算域截断方法,使直接模拟只在介质复杂或非线性效应重要的区域进行;(ii)有效时间─步进方法,允许简单处理高分辨率或几何细节的集中区域。波传播问题在许多领域具有根本的重要性,应用科学与技术它们涵盖了广泛的物理学(电磁学,流体和固体力学),但共享基本的数学属性。波的定义特征是它能够相对于其基本尺寸(波长)传播很长距离,携带关于它所传播的介质的详细信息。因此,波是我们探索自然和交流的主要方法。这个基本特征的结果是波传播问题通常涉及不同的空间尺度-从散射体的几何细节到传播距离。这些多尺度,反过来,导致计算分析的困难。特别是,它们的统一分辨率将导致令人望而却步的自由度。因此,必须开发的方法,可以集中计算资源只在需要的地方,提供我们考虑的问题的主要动机。除了这项分析,该计划还将与正在构建软件的研究人员合作,这些软件用于模拟喷气噪声、复杂结构中的电磁散射以及通用波传播问题。因此,研究中的任何积极进展都可以尽快投入使用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thomas Hagstrom其他文献
Energy-Conserving Hermite Methods for Maxwell’s Equations
- DOI:
10.1007/s42967-024-00469-9 - 发表时间:
2025-02-26 - 期刊:
- 影响因子:1.400
- 作者:
Daniel Appelö;Thomas Hagstrom;Yann-Meing Law - 通讯作者:
Yann-Meing Law
Perfectly matched layers in photonics computations: 1D and 2D nonlinear coupled mode equations
- DOI:
10.1016/j.jcp.2006.10.002 - 发表时间:
2007-05-01 - 期刊:
- 影响因子:
- 作者:
Tomáš Dohnal;Thomas Hagstrom - 通讯作者:
Thomas Hagstrom
Locating Discontinuities of a Bounded Function by the Partial Sums of Its Fourier Series
- DOI:
10.1023/a:1023204330916 - 发表时间:
1999-12-01 - 期刊:
- 影响因子:3.300
- 作者:
George Kvernadze;Thomas Hagstrom;Henry Shapiro - 通讯作者:
Henry Shapiro
High-order discretization of a stable time-domain integral equation for 3D acoustic scattering
- DOI:
10.1016/j.jcp.2019.109047 - 发表时间:
2020-02-01 - 期刊:
- 影响因子:
- 作者:
Alex Barnett;Leslie Greengard;Thomas Hagstrom - 通讯作者:
Thomas Hagstrom
Thomas Hagstrom的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Thomas Hagstrom', 18)}}的其他基金
Robust and Efficient Numerical Methods for Wave Equations in the Time Domain: Nonlinear and Multiscale Problems
时域波动方程的鲁棒高效数值方法:非线性和多尺度问题
- 批准号:
2309687 - 财政年份:2023
- 资助金额:
$ 12.82万 - 项目类别:
Standard Grant
Numerical Methods for Waves: Nonlocal, Nonlinear, and Multiscale Systems
波的数值方法:非局部、非线性和多尺度系统
- 批准号:
2012296 - 财政年份:2020
- 资助金额:
$ 12.82万 - 项目类别:
Continuing Grant
Robust High-Order Methods for Wave Equations in the Time Domain
时域波动方程的鲁棒高阶方法
- 批准号:
1418871 - 财政年份:2014
- 资助金额:
$ 12.82万 - 项目类别:
Standard Grant
Collaborative Research: Simulation and Analysis of Turbulent Jet Noise Using Arbitrary-Order Hermite Methods
合作研究:使用任意阶 Hermite 方法模拟和分析湍流射流噪声
- 批准号:
0904773 - 财政年份:2009
- 资助金额:
$ 12.82万 - 项目类别:
Standard Grant
Numerical Methods for Wave Propagation Problems: Efficient Resolution of Multiple Scales
波传播问题的数值方法:多尺度的有效解决
- 批准号:
0929241 - 财政年份:2008
- 资助金额:
$ 12.82万 - 项目类别:
Standard Grant
Numerical Methods for Wave Propagation Problems: Efficient Resolution of Multiple Scales
波传播问题的数值方法:多尺度的有效解决
- 批准号:
0610067 - 财政年份:2006
- 资助金额:
$ 12.82万 - 项目类别:
Standard Grant
New Methods for the Simulation and Analysis of Waves
波浪模拟和分析的新方法
- 批准号:
9971772 - 财政年份:1999
- 资助金额:
$ 12.82万 - 项目类别:
Standard Grant
Scientific Computing Research Environments in the Mathematical Sciences
数学科学中的科学计算研究环境
- 批准号:
9977396 - 财政年份:1999
- 资助金额:
$ 12.82万 - 项目类别:
Standard Grant
Mathematical Sciences: Computational Analysis of Multiple Scales Problems in Wave Propagation
数学科学:波传播中多尺度问题的计算分析
- 批准号:
9600146 - 财政年份:1996
- 资助金额:
$ 12.82万 - 项目类别:
Standard Grant
Scientific Computing Research Developments for the Mathematical Sciences
数学科学的科学计算研究进展
- 批准号:
9508285 - 财政年份:1995
- 资助金额:
$ 12.82万 - 项目类别:
Standard Grant
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: New Regression Models and Methods for Studying Multiple Categorical Responses
合作研究:研究多重分类响应的新回归模型和方法
- 批准号:
2415067 - 财政年份:2024
- 资助金额:
$ 12.82万 - 项目类别:
Continuing Grant
Investigating Lithospheric Heterogeneity of the North American Craton with Multiple Seismological Methods
多种地震学方法研究北美克拉通岩石圈非均质性
- 批准号:
2319445 - 财政年份:2023
- 资助金额:
$ 12.82万 - 项目类别:
Continuing Grant
Mobile reception methods of disaster information broadcast from multiple global navigation satellite systems
多个全球导航卫星系统灾害信息广播的移动接收方法
- 批准号:
23K03858 - 财政年份:2023
- 资助金额:
$ 12.82万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Computational Methods for Emerging Spatially-resolved Transcriptomics with Multiple Samples
新兴的多样本空间分辨转录组学的计算方法
- 批准号:
10711312 - 财政年份:2023
- 资助金额:
$ 12.82万 - 项目类别:
Development of novel methods to enable robust comparison of real-world Progression Free Survival (rwPFS) and Clinical Trial PFS in Multiple Myeloma
开发新方法以对多发性骨髓瘤的真实无进展生存期 (rwPFS) 和临床试验 PFS 进行稳健比较
- 批准号:
10797236 - 财政年份:2023
- 资助金额:
$ 12.82万 - 项目类别:
New methods for multiple comparison procedures
多重比较程序的新方法
- 批准号:
RGPIN-2018-05119 - 财政年份:2022
- 资助金额:
$ 12.82万 - 项目类别:
Discovery Grants Program - Individual
Spectral methods for single and multiple graph inference
用于单图和多图推理的谱方法
- 批准号:
2210805 - 财政年份:2022
- 资助金额:
$ 12.82万 - 项目类别:
Standard Grant
Statistical Methods for Integration of Multiple Data Sources toward Precision Cancer Medicine
整合多个数据源以实现精准癌症医学的统计方法
- 批准号:
10415744 - 财政年份:2022
- 资助金额:
$ 12.82万 - 项目类别:
Novel p-Value Based Multiple Testing Methods for Variable Selection with False Discovery Rate Control
基于 p 值的新颖变量选择多重测试方法以及错误发现率控制
- 批准号:
2210687 - 财政年份:2022
- 资助金额:
$ 12.82万 - 项目类别:
Standard Grant
Leveraging passive objective assessment methods of preschooler's media use to examine multiple paths of influence on sleep, executive function and weight status
利用学龄前儿童媒体使用的被动客观评估方法来检查对睡眠、执行功能和体重状况的影响的多种途径
- 批准号:
10701894 - 财政年份:2022
- 资助金额:
$ 12.82万 - 项目类别: