Robust High-Order Methods for Wave Equations in the Time Domain
时域波动方程的鲁棒高阶方法
基本信息
- 批准号:1418871
- 负责人:
- 金额:$ 39.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-07-01 至 2018-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The goal of this research is to address basic issues in the development of robust and efficient computational methods for simulating waves. Problems governed by wave propagation span much of the physical phenomena we experience and play a fundamental role both in engineered systems for communication and imaging as well as naturally-occurring aspects of earth's environment. Specific examples include: wave phenomena involved with natural disasters such as earthquakes and tsunamis; environmental irritants such as acoustic pollution near airports and in cities; electromagnetic phenomena of importance to defense and civilian applications, such as radar imaging; and applications in medicine such as the interaction of high-frequency ultrasound and tissue. This project will develop improved tools for simulating waves and will design associated general-purpose open-source software with the potential for significant impact in a range of important application areas.With the staggering increases in computational power that have been and continue to be achieved, we expect to simulate more difficult and comprehensive models of physical phenomena. For wave propagation problems posed in the time domain, this means problems with many wavelengths within the computational domain involving interactions with complex geometrical features. To treat such problems efficiently requires the use of high-order discretization methods to minimize the effects of dispersion and dissipation. This work will be focused on fundamental mathematical issues required for the further development of robust, high-order wave solvers. These include: i. Development and analysis of energy-stable high-order/high-resolution discretization methods on hybrid structured-unstructured grids. Specifically we will investigate coupling high-order upwind discontinuous Galerkin methods on unstructured grids near complex boundaries and material interfaces with more efficient structured grid methods such as novel spectral element methods based on Hermite-Birkhoff interpolation (also known as jet schemes) or upwind difference methods constructed from piecewise polynomial or band-limited interpolation functions. Both first-order and second-order hyperbolic systems will be considered. ii. Development, analysis, and implementation of hp-adaptive strategies for these methods. iii. Coupling with an open-source radiation boundary condition library (expected release late 2014) containing various implementations of complete radiation boundary conditions (CRBC). These allow a priori determination of the boundary condition parameters to guarantee any desired accuracy for isotropic, homogeneous models in the far field. iv. Leveraging the fact that CRBCs are stable for any Friedrichs system, extend their applicability to more complex physical models including anisotropy.
本研究的目标是解决基本问题,在强大的和有效的计算方法模拟波浪的发展。由波传播控制的问题跨越了我们所经历的许多物理现象,并在通信和成像的工程系统以及地球环境的自然发生方面发挥着重要作用。具体例子包括:与地震和海啸等自然灾害有关的波动现象;机场和城市附近的声污染等环境刺激物;对国防和民用应用具有重要意义的电磁现象,如雷达成像;以及医学应用,如高频超声和组织的相互作用。该项目将开发用于模拟波浪的改进工具,并将设计相关的通用开放源码软件,这些软件可能在一系列重要应用领域产生重大影响。随着计算能力的惊人增长,我们预计将模拟更困难和更全面的物理现象模型。对于在时域中提出的波传播问题,这意味着在计算域内具有许多波长的问题,涉及与复杂几何特征的相互作用。为了有效地处理这些问题,需要使用高阶离散化方法,以尽量减少色散和耗散的影响。这项工作将集中在基本的数学问题所需的进一步发展的强大,高阶波解算器。这些措施包括:混合结构-非结构网格上能量稳定的高阶/高分辨率离散化方法的发展和分析。具体来说,我们将研究耦合高阶迎风不连续Galerkin方法的非结构网格附近的复杂边界和材料接口更有效的结构网格方法,如新的谱元素方法的基础上Hermite-Birkhoff插值(也称为喷射计划)或迎风差分方法构造分段多项式或带限插值函数。一阶和二阶双曲方程组都将被考虑。二.这些方法的hp适应策略的开发、分析和实施。三.与开源辐射边界条件库(预计2014年底发布)耦合,该库包含完整辐射边界条件(CRBC)的各种实现。这些允许先验确定的边界条件参数,以保证在远场的各向同性,均匀模型的任何所需的精度。 四.利用CRBC对任何弗里德里希系统都是稳定的这一事实,将其适用性扩展到更复杂的物理模型,包括各向异性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thomas Hagstrom其他文献
Energy-Conserving Hermite Methods for Maxwell’s Equations
- DOI:
10.1007/s42967-024-00469-9 - 发表时间:
2025-02-26 - 期刊:
- 影响因子:1.400
- 作者:
Daniel Appelö;Thomas Hagstrom;Yann-Meing Law - 通讯作者:
Yann-Meing Law
Perfectly matched layers in photonics computations: 1D and 2D nonlinear coupled mode equations
- DOI:
10.1016/j.jcp.2006.10.002 - 发表时间:
2007-05-01 - 期刊:
- 影响因子:
- 作者:
Tomáš Dohnal;Thomas Hagstrom - 通讯作者:
Thomas Hagstrom
Locating Discontinuities of a Bounded Function by the Partial Sums of Its Fourier Series
- DOI:
10.1023/a:1023204330916 - 发表时间:
1999-12-01 - 期刊:
- 影响因子:3.300
- 作者:
George Kvernadze;Thomas Hagstrom;Henry Shapiro - 通讯作者:
Henry Shapiro
High-order discretization of a stable time-domain integral equation for 3D acoustic scattering
- DOI:
10.1016/j.jcp.2019.109047 - 发表时间:
2020-02-01 - 期刊:
- 影响因子:
- 作者:
Alex Barnett;Leslie Greengard;Thomas Hagstrom - 通讯作者:
Thomas Hagstrom
Thomas Hagstrom的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Thomas Hagstrom', 18)}}的其他基金
Robust and Efficient Numerical Methods for Wave Equations in the Time Domain: Nonlinear and Multiscale Problems
时域波动方程的鲁棒高效数值方法:非线性和多尺度问题
- 批准号:
2309687 - 财政年份:2023
- 资助金额:
$ 39.9万 - 项目类别:
Standard Grant
Numerical Methods for Waves: Nonlocal, Nonlinear, and Multiscale Systems
波的数值方法:非局部、非线性和多尺度系统
- 批准号:
2012296 - 财政年份:2020
- 资助金额:
$ 39.9万 - 项目类别:
Continuing Grant
Collaborative Research: Simulation and Analysis of Turbulent Jet Noise Using Arbitrary-Order Hermite Methods
合作研究:使用任意阶 Hermite 方法模拟和分析湍流射流噪声
- 批准号:
0904773 - 财政年份:2009
- 资助金额:
$ 39.9万 - 项目类别:
Standard Grant
Numerical Methods for Wave Propagation Problems: Efficient Resolution of Multiple Scales
波传播问题的数值方法:多尺度的有效解决
- 批准号:
0929241 - 财政年份:2008
- 资助金额:
$ 39.9万 - 项目类别:
Standard Grant
Numerical Methods for Wave Propagation Problems: Efficient Resolution of Multiple Scales
波传播问题的数值方法:多尺度的有效解决
- 批准号:
0610067 - 财政年份:2006
- 资助金额:
$ 39.9万 - 项目类别:
Standard Grant
Numerical Methods for Multiple Scale Problems in Wave Propagation: Efficient Approximation of Integral Operators in the Time Domain
波传播中多尺度问题的数值方法:时域积分算子的有效逼近
- 批准号:
0306285 - 财政年份:2003
- 资助金额:
$ 39.9万 - 项目类别:
Standard Grant
New Methods for the Simulation and Analysis of Waves
波浪模拟和分析的新方法
- 批准号:
9971772 - 财政年份:1999
- 资助金额:
$ 39.9万 - 项目类别:
Standard Grant
Scientific Computing Research Environments in the Mathematical Sciences
数学科学中的科学计算研究环境
- 批准号:
9977396 - 财政年份:1999
- 资助金额:
$ 39.9万 - 项目类别:
Standard Grant
Mathematical Sciences: Computational Analysis of Multiple Scales Problems in Wave Propagation
数学科学:波传播中多尺度问题的计算分析
- 批准号:
9600146 - 财政年份:1996
- 资助金额:
$ 39.9万 - 项目类别:
Standard Grant
Scientific Computing Research Developments for the Mathematical Sciences
数学科学的科学计算研究进展
- 批准号:
9508285 - 财政年份:1995
- 资助金额:
$ 39.9万 - 项目类别:
Standard Grant
相似国自然基金
基于Order的SIS/LWE变体问题及其应用
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
Poisson Order, Morita 理论,群作用及相关课题
- 批准号:19ZR1434600
- 批准年份:2019
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Conference: North American High Order Methods Con (NAHOMCon)
会议:北美高阶方法大会 (NAHOMCon)
- 批准号:
2333724 - 财政年份:2024
- 资助金额:
$ 39.9万 - 项目类别:
Standard Grant
Collaborative Research: Arbitrary Order Structure-Preserving Discontinuous Galerkin Methods for Compressible Euler Equations With Self-Gravity in Astrophysical Flows
合作研究:天体物理流中自重力可压缩欧拉方程的任意阶结构保持不连续伽辽金方法
- 批准号:
2309591 - 财政年份:2023
- 资助金额:
$ 39.9万 - 项目类别:
Standard Grant
Higher order methods for fluid structure interaction problems
流体结构相互作用问题的高阶方法
- 批准号:
2309606 - 财政年份:2023
- 资助金额:
$ 39.9万 - 项目类别:
Standard Grant
Developing High Order Stable and Efficient Methods for Long Time Simulations of Gravitational Waveforms
开发高阶稳定且有效的方法来长时间模拟引力波形
- 批准号:
2309609 - 财政年份:2023
- 资助金额:
$ 39.9万 - 项目类别:
Standard Grant
Collaborative Research: Arbitrary Order Structure-Preserving Discontinuous Galerkin Methods for Compressible Euler Equations With Self-Gravity in Astrophysical Flows
合作研究:天体物理流中自重力可压缩欧拉方程的任意阶结构保持间断伽辽金方法
- 批准号:
2309590 - 财政年份:2023
- 资助金额:
$ 39.9万 - 项目类别:
Standard Grant
Analysis, design, and implementation of novel high-order operator splitting methods
新型高阶算子分裂方法的分析、设计与实现
- 批准号:
574878-2022 - 财政年份:2022
- 资助金额:
$ 39.9万 - 项目类别:
University Undergraduate Student Research Awards
Curvilinear Grid Adaptation with Nonlinearly Stable Flux Reconstruction High-Order Methods in Split-Form
具有非线性稳定通量重建高阶分割法的曲线网格自适应
- 批准号:
569781-2022 - 财政年份:2022
- 资助金额:
$ 39.9万 - 项目类别:
Postgraduate Scholarships - Doctoral
Efficient Conservative High-Order Solution-Flux Domain Decomposition Methods and Local Refinements for Flows in Porous Media and Electromagnetics
多孔介质和电磁学中流动的高效保守高阶解-通量域分解方法和局部细化
- 批准号:
RGPIN-2022-04571 - 财政年份:2022
- 资助金额:
$ 39.9万 - 项目类别:
Discovery Grants Program - Individual
Second-order Hessian-free methods for statistical learning and stochastic optimization
用于统计学习和随机优化的二阶无 Hessian 方法
- 批准号:
RGPIN-2022-04400 - 财政年份:2022
- 资助金额:
$ 39.9万 - 项目类别:
Discovery Grants Program - Individual
High-order numerical methods for differential equations
微分方程的高阶数值方法
- 批准号:
RGPIN-2020-04663 - 财政年份:2022
- 资助金额:
$ 39.9万 - 项目类别:
Discovery Grants Program - Individual