Bayesian Inference Estimation in Nonparametric Regression and its Frequentist Properties

非参数回归中的贝叶斯推理估计及其频率属性

基本信息

  • 批准号:
    9971848
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1999
  • 资助国家:
    美国
  • 起止时间:
    1999-08-15 至 2002-07-31
  • 项目状态:
    已结题

项目摘要

Nonparametric regression analysis is a rapidly developing contemporary statistical methodology. It avoids some of the restrictive assumptions in more classical regression approaches. However, to date it has suffered by comparison from an almost total absence of the inferential tools (e.g. tests and confidence intervals) which help make classical regression analysis so useful. Zhao (1998 preprint) proposed the first proper Bayesian estimator for nonparametric regression which has acceptable performance for every sample size. The current proposal is to extend this construction in various ways and to study the inferential properties related to such Bayesian formulations. Its various properties, including the acceptable performance of its Bayes estimator, suggest that Bayesian inference based on this prior distribution and its extensions may be feasible. They may also present a satisfactory comprehensive set of inferential tools for nonparametric regression analysis and related formulations.Regression analysis is a classical general statistical tool, which has been widely used in virtually every area of statistical applications. Nonparametric regression analysis is a more recent methodology, which avoids some restrictive assumptions in the classical theory. The general theory includes nonparametric formulations of regression, of density estimation, of signal processing and of spectral density estimation in time series analysis. The theory has already found significant applications in areas such as medical and environmental imaging, economic analysis, computer engineering, and geophysics. Bayesian analysis is a very powerful general statistical methodology. This research project proposes a possible way of using Bayesian techniques to solve nonparametric regression problems.
非参数回归分析是一种快速发展的当代统计方法。 它避免了更经典的回归方法中的一些限制性假设。 然而,迄今为止,由于几乎完全缺乏推理工具(例如测试和置信区间),这使得经典回归分析变得如此有用。 赵(1998 年预印本)提出了第一个适用于非参数回归的贝叶斯估计器,它对于每个样本大小都具有可接受的性能。 目前的建议是以各种方式扩展这种构造,并研究与此类贝叶斯公式相关的推理属性。 它的各种属性,包括其贝叶斯估计器的可接受的性能,表明基于此先验分布及其扩展的贝叶斯推理可能是可行的。 它们还可以为非参数回归分析和相关公式提供一套令人满意的综合推理工具。回归分析是一种经典的通用统计工具,几乎已广泛应用于统计应用的每个领域。 非参数回归分析是一种较新的方法,它避免了经典理论中的一些限制性假设。 一般理论包括时间序列分析中回归、密度估计、信号处理和谱密度估计的非参数公式。该理论已经在医学和环境成像、经济分析、计算机工程和地球物理学等领域找到了重要的应用。 贝叶斯分析是一种非常强大的通用统计方法。 该研究项目提出了一种使用贝叶斯技术解决非参数回归问题的可能方法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Linda Zhao其他文献

Networks in the making: Friendship segregation and ethnic homophily.
正在形成的网络:友谊隔离和种族同质性。
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Linda Zhao
  • 通讯作者:
    Linda Zhao
Correction to: Working with Misspecified Regression Models
  • DOI:
    10.1007/s10940-020-09464-8
  • 发表时间:
    2020-06-01
  • 期刊:
  • 影响因子:
    3.300
  • 作者:
    Richard Berk;Lawrence Brown;Andreas Buja;Edward George;Linda Zhao
  • 通讯作者:
    Linda Zhao
From Superdiversity to Consolidation: Implications of Structural Intersectionality for Interethnic Friendships
从超级多样性到整合:结构交叉性对种族间友谊的影响
Impact of Quarterly Interdisciplinary Medication Reviews on Resident Care in a Canadian Long Term Care Facility
  • DOI:
    10.1016/j.jamda.2012.12.065
  • 发表时间:
    2013-03-01
  • 期刊:
  • 影响因子:
  • 作者:
    Denis J.P. O'Donnell;Judith Vepy-Lebrun;Denis J.P. O'Donnell;Judith Vepy-Lebrun;Sid Feldman;Paul R. Katz;Linda Zhao
  • 通讯作者:
    Linda Zhao
Inequality in Place: Effects of Exposure to Neighborhood-Level Economic Inequality on Mortality.
地方不平等:社区层面经济不平等对死亡率的影响。
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Linda Zhao;P. Hessel;J. Simon Thomas;Jason Beckfield
  • 通讯作者:
    Jason Beckfield

Linda Zhao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Linda Zhao', 18)}}的其他基金

Valid Inference when Analytical Models are Approximations
当分析模型为近似值时的有效推理
  • 批准号:
    1512084
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似海外基金

Identification, estimation, and inference of the discount factor in dynamic discrete choice models
动态离散选择模型中折扣因子的识别、估计和推断
  • 批准号:
    24K04814
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Partitioning-Based Learning Methods for Treatment Effect Estimation and Inference
基于分区的治疗效果估计和推理学习方法
  • 批准号:
    2241575
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Applying causal inference methods to improve estimation of the real-world benefits and harms of lung cancer screening
应用因果推理方法来改进对肺癌筛查的现实益处和危害的估计
  • 批准号:
    10737187
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Inference and Model Building for Vision-based Estimation of Transmissive Objects
基于视觉的透射物体估计的推理和模型构建
  • 批准号:
    RGPIN-2017-05638
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Estimation and inference in directed acyclic graphical models for biological networks
生物网络有向无环图模型的估计和推理
  • 批准号:
    10330130
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Improvement of nonparametric inference based on kernel type estimation and resampling method, and its application
基于核类型估计和重采样方法的非参数推理改进及其应用
  • 批准号:
    22K11939
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Non-parametric identification, estimation and inference: generalized functions approach
非参数识别、估计和推理:广义函数方法
  • 批准号:
    RGPIN-2020-05444
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Essential and incidental measurement error: Bayesian estimation and inference when sample measurements are random-variable-valued
基本和偶然测量误差:样本测量为随机变量值时的贝叶斯估计和推断
  • 批准号:
    RGPIN-2021-04357
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Estimation and Inference with High-Dimensional Data
高维数据的估计和推理
  • 批准号:
    2210850
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Estimation and Inference via Computational Statistics Algorithms
通过计算统计算法进行估计和推理
  • 批准号:
    RGPIN-2019-04142
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了