Symplectic Geometry and Applications
辛几何及其应用
基本信息
- 批准号:9971914
- 负责人:
- 金额:$ 7.09万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1999
- 资助国家:美国
- 起止时间:1999-08-15 至 2005-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractAward: DMS-9971914Principal Investigator: Jonathan WeitsmanThe work in symplectic geometry on which this proposal focuses isdivided roughly into two overlapping areas. The first set ofproblems is focused on developing a better understanding ofsymplectic manifolds, and in particular on the topology andgeometry of symplectic manifolds equipped with group actions.The past five years have seen a significant increase of the roleof the symplectic category in topology and geometry, as well as abetter understanding of the analogies and differences betweensymplectic geometry and Kahler geometry. In this proposal wepropose to develop tools for the study of Hamiltonian andsymplectic group actions, as well as of the topology and geometryof symplectic quotients. The second set of problems we areconcerned with is the application of ideas from symplecticgeometry to problems arising in other areas of mathematics andmathematical physics. These problems are largely motivated bythe applications of quantum field theory to geometry andtopology, many of which either involve symplectic geometrydirectly or else involve areas where symplectic geometry can helpto provide a better view of the geometrical structure that mustunderlie these still-mysterious methods arising from physics.The areas of mathematics involved---symplectic geometry andmathematical physics---are areas which have their historicalorigins in the physical sciences. As such, they have had a longrecord of gaining insight from problems arising in the naturalsciences, as well as of making significant contributions toapplied problems. This record is one attained mostly by thewhole field over decades, rather than by individual contributionsover the short term. But to the extent that a long and consistentpast record can be used as an indication of the future, there areexcellent prospects that current work in these areas of coremathematics will provide indispensible building blocks forscientific and technological advances in the decades to come.
摘要:dms -9971914主要研究者:Jonathan weitsman本文所关注的辛几何工作大致分为两个重叠的领域。第一组问题侧重于更好地理解辛流形,特别是具有群作用的辛流形的拓扑和几何。在过去的五年中,辛范畴在拓扑和几何中的作用显著增加,并且更好地理解了辛几何和Kahler几何之间的相似和差异。在这个建议中,我们建议开发研究哈密顿和辛群作用的工具,以及辛商的拓扑和几何。我们关心的第二组问题是将辛几何的思想应用于数学和数学物理的其他领域中出现的问题。这些问题很大程度上是由量子场论在几何和拓扑学中的应用所激发的,其中许多问题要么直接涉及辛几何,要么涉及辛几何可以帮助提供更好的几何结构视图的领域,这些几何结构必须是这些仍然神秘的物理方法的基础。所涉及的数学领域——辛几何和数学物理——是在物理科学中有其历史起源的领域。因此,他们长期以来一直从自然科学中出现的问题中获得洞察力,并对应用问题做出了重大贡献。这一记录主要是整个领域在几十年的时间里取得的,而不是个人在短期内的贡献。但是,在某种程度上,长期和持续的过去记录可以作为未来的指示,这些核心数学领域的当前工作将为未来几十年的科学和技术进步提供不可或缺的基石,这是一个极好的前景。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jonathan Weitsman其他文献
Space-dependent dirac operators and effective quantum field theory for fermions
- DOI:
10.1007/bf02104114 - 发表时间:
1991-01-01 - 期刊:
- 影响因子:2.600
- 作者:
John Z. Imbrie;Steven A. Janowsky;Jonathan Weitsman - 通讯作者:
Jonathan Weitsman
Darboux, Moser and Weinstein theorems for prequantum systems and applications to geometric quantization
- DOI:
10.1016/j.geomphys.2024.105298 - 发表时间:
2024-12-01 - 期刊:
- 影响因子:
- 作者:
Eva Miranda;Jonathan Weitsman - 通讯作者:
Jonathan Weitsman
A vanishing theorem for supersymmetric quantum field theory and finite size effects in multiphase cluster expansions
- DOI:
10.1007/bf02100286 - 发表时间:
1991-12-01 - 期刊:
- 影响因子:2.600
- 作者:
Steven A. Janowsky;Jonathan Weitsman - 通讯作者:
Jonathan Weitsman
The phase structure of the two-dimensionalN=2 Wess-Zumino model
- DOI:
10.1007/bf02099171 - 发表时间:
1991-11-01 - 期刊:
- 影响因子:2.600
- 作者:
Steven A. Janowsky;Jonathan Weitsman - 通讯作者:
Jonathan Weitsman
Jonathan Weitsman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jonathan Weitsman', 18)}}的其他基金
New Avenues in Symplectic Geometry and its Applications
辛几何及其应用的新途径
- 批准号:
1211819 - 财政年份:2012
- 资助金额:
$ 7.09万 - 项目类别:
Standard Grant
Mathematical Sciences: Symplectic Geometry: Moduli Spaces and Manifold Invariants
数学科学:辛几何:模空间和流形不变量
- 批准号:
9796191 - 财政年份:1996
- 资助金额:
$ 7.09万 - 项目类别:
Continuing Grant
Mathematical Sciences: Symplectic Geometry: Moduli Spaces and Manifold Invariants
数学科学:辛几何:模空间和流形不变量
- 批准号:
9403567 - 财政年份:1994
- 资助金额:
$ 7.09万 - 项目类别:
Continuing Grant
Mathematical Sciences: Postdoctoral Reseach Fellowship
数学科学:博士后研究奖学金
- 批准号:
8807291 - 财政年份:1988
- 资助金额:
$ 7.09万 - 项目类别:
Fellowship Award
相似国自然基金
2019年度国际理论物理中心-ICTP School on Geometry and Gravity (smr 3311)
- 批准号:11981240404
- 批准年份:2019
- 资助金额:1.5 万元
- 项目类别:国际(地区)合作与交流项目
新型IIIB、IVB 族元素手性CGC金属有机化合物(Constrained-Geometry Complexes)的合成及反应性研究
- 批准号:20602003
- 批准年份:2006
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Techniques in Symplectic Geometry and Applications
辛几何技术及其应用
- 批准号:
2345030 - 财政年份:2023
- 资助金额:
$ 7.09万 - 项目类别:
Standard Grant
Group actions, symplectic and contact geometry, and applications
群作用、辛几何和接触几何以及应用
- 批准号:
RGPIN-2018-05771 - 财政年份:2022
- 资助金额:
$ 7.09万 - 项目类别:
Discovery Grants Program - Individual
Symplectic topology, generalized geometry and their applications
辛拓扑、广义几何及其应用
- 批准号:
RGPIN-2019-05899 - 财政年份:2022
- 资助金额:
$ 7.09万 - 项目类别:
Discovery Grants Program - Individual
Techniques in Symplectic Geometry and Applications
辛几何技术及其应用
- 批准号:
2204321 - 财政年份:2022
- 资助金额:
$ 7.09万 - 项目类别:
Standard Grant
Higher Algebraic Structures in Symplectic Geometry and Applications
辛几何中的高等代数结构及其应用
- 批准号:
2105578 - 财政年份:2021
- 资助金额:
$ 7.09万 - 项目类别:
Standard Grant
Collaborative Research: Applications of Symplectic Geometry to Frame Theory and Signal Processing
合作研究:辛几何在框架理论和信号处理中的应用
- 批准号:
2107700 - 财政年份:2021
- 资助金额:
$ 7.09万 - 项目类别:
Standard Grant
Symplectic topology, generalized geometry and their applications
辛拓扑、广义几何及其应用
- 批准号:
RGPIN-2019-05899 - 财政年份:2021
- 资助金额:
$ 7.09万 - 项目类别:
Discovery Grants Program - Individual
Group actions, symplectic and contact geometry, and applications
群作用、辛几何和接触几何以及应用
- 批准号:
RGPIN-2018-05771 - 财政年份:2021
- 资助金额:
$ 7.09万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: Applications of Symplectic Geometry to Frame Theory and Signal Processing
合作研究:辛几何在框架理论和信号处理中的应用
- 批准号:
2107808 - 财政年份:2021
- 资助金额:
$ 7.09万 - 项目类别:
Standard Grant
Symplectic topology, generalized geometry and their applications
辛拓扑、广义几何及其应用
- 批准号:
RGPIN-2019-05899 - 财政年份:2020
- 资助金额:
$ 7.09万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




