New Avenues in Symplectic Geometry and its Applications
辛几何及其应用的新途径
基本信息
- 批准号:1211819
- 负责人:
- 金额:$ 25.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-07-01 至 2018-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We describe several problems in symplectic geometry which new results and methods, appearing in both Mathematics and Physics, may provide new avenues for. The geometry of the Lagrangian subvarieties of a symplectic manifold has been the subject of a great deal of current research. One version of this is a construction by Weinstein of the symplectic ``category'' whose objects are symplectic manifolds and whose morphisms are Lagrangian subvarieties. A recent monograph by Guillemin and Sternberg shows that Weinstein's category and variants of it are powerful tools in semi-classical analysis. We show hints that this category reveals symmetries in semiclassical systems which are not apparent in the underlying symplectic manifold. This may be a semiclassical version of a principle advocated by Witten, that a quantum system may be have much more symmetry than the underlying symplectic manifold. Another area we propose investigating is the relation between symplectic geometry and quantum manifold invariants. Many topological quantum field theories may be interpreted mathematically as counts of points in moduli spaces. One major exception seemed to be Chern-Simons gauge theory; in Physics language, this theory is not supersymmetric. Recent work in Physics (due to Beasley-Witten, Kapustin-Willett-Yaakov, Kallen, and others) has shows that Chern Simons Gauge theory has supersymmetric avatars. We use this insight to conjecture formulas for quantum manifold invariants which may give more insight into their topological nature. We also speculate on other possibilities raised by these constructions.The interplay of ideas from Mathematics and Theoretical Physics has been a productive one for both fields. This project develops new perspectives on the relations between these two areas. The planned project would give both concrete mathematical results and, hopefully, new avenues of interaction between the two fields. More broadly, problems arising from Physics, and the Mathematics arising from grappling with these problems, have been at the core of Mathematics for centuries. Quantum Field Theory and String Theory show every promise of playing a similar role in the future, and stimulating new discoveries in Mathematics, which invariably lead to applications far removed from their area of origin.
我们描述了辛几何中的几个问题,这些问题在数学和物理学中出现的新结果和新方法可能为解决这些问题提供新的途径。辛流形的拉格朗日子变种的几何性质一直是当前大量研究的课题。其中一个版本是Weinstein对辛“范畴”的构造,它的对象是辛流形,其态射是拉格朗日子变种。吉列明和斯滕伯格最近的一篇专著表明,韦恩斯坦的分类及其变体是半经典分析的有力工具。我们展示了这个范畴揭示了在潜在的辛流形中不明显的半经典系统中的对称性的暗示。这可能是威腾所提倡的一个原理的半经典版本,即量子系统可能比底层的辛流形具有更多的对称性。我们提出研究的另一个领域是辛几何和量子流形不变量之间的关系。许多拓扑量子场论在数学上可以解释为模空间中点的计数。一个主要的例外似乎是陈-西蒙斯规范理论;用物理学的语言来说,这个理论不是超对称的。最近在物理学上的工作(由于Beasley-Witten, Kapustin-Willett-Yaakov, Kallen和其他人)表明,chen Simons规范理论具有超对称的虚拟体。我们利用这一见解来推测量子流形不变量的公式,这可能会让我们更深入地了解它们的拓扑性质。我们还推测了这些构造所带来的其他可能性。数学和理论物理思想的相互作用对两个领域都是有益的。这个项目为这两个领域之间的关系提供了新的视角。计划中的项目将给出具体的数学结果,并有望为两个领域之间的相互作用提供新的途径。更广泛地说,几个世纪以来,物理学产生的问题以及解决这些问题所产生的数学一直是数学的核心。量子场论和弦理论显示出在未来扮演类似角色的希望,并刺激数学的新发现,这些发现总是导致远离其起源领域的应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jonathan Weitsman其他文献
Space-dependent dirac operators and effective quantum field theory for fermions
- DOI:
10.1007/bf02104114 - 发表时间:
1991-01-01 - 期刊:
- 影响因子:2.600
- 作者:
John Z. Imbrie;Steven A. Janowsky;Jonathan Weitsman - 通讯作者:
Jonathan Weitsman
Darboux, Moser and Weinstein theorems for prequantum systems and applications to geometric quantization
- DOI:
10.1016/j.geomphys.2024.105298 - 发表时间:
2024-12-01 - 期刊:
- 影响因子:
- 作者:
Eva Miranda;Jonathan Weitsman - 通讯作者:
Jonathan Weitsman
A vanishing theorem for supersymmetric quantum field theory and finite size effects in multiphase cluster expansions
- DOI:
10.1007/bf02100286 - 发表时间:
1991-12-01 - 期刊:
- 影响因子:2.600
- 作者:
Steven A. Janowsky;Jonathan Weitsman - 通讯作者:
Jonathan Weitsman
The phase structure of the two-dimensionalN=2 Wess-Zumino model
- DOI:
10.1007/bf02099171 - 发表时间:
1991-11-01 - 期刊:
- 影响因子:2.600
- 作者:
Steven A. Janowsky;Jonathan Weitsman - 通讯作者:
Jonathan Weitsman
Jonathan Weitsman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jonathan Weitsman', 18)}}的其他基金
Mathematical Sciences: Symplectic Geometry: Moduli Spaces and Manifold Invariants
数学科学:辛几何:模空间和流形不变量
- 批准号:
9796191 - 财政年份:1996
- 资助金额:
$ 25.68万 - 项目类别:
Continuing Grant
Mathematical Sciences: Symplectic Geometry: Moduli Spaces and Manifold Invariants
数学科学:辛几何:模空间和流形不变量
- 批准号:
9403567 - 财政年份:1994
- 资助金额:
$ 25.68万 - 项目类别:
Continuing Grant
Mathematical Sciences: Postdoctoral Reseach Fellowship
数学科学:博士后研究奖学金
- 批准号:
8807291 - 财政年份:1988
- 资助金额:
$ 25.68万 - 项目类别:
Fellowship Award
相似海外基金
SCT-TOD: Targeting secretin secretion - new avenues for the treatment of diabetes and obesity
SCT-TOD:靶向促胰液素分泌——治疗糖尿病和肥胖症的新途径
- 批准号:
EP/Y036824/1 - 财政年份:2023
- 资助金额:
$ 25.68万 - 项目类别:
Fellowship
Genome editing technologies applied to LSFC: Exploring therapeutic avenues and improving diagnostics in Canada
基因组编辑技术应用于 LSFC:探索加拿大的治疗途径并改进诊断
- 批准号:
495765 - 财政年份:2023
- 资助金额:
$ 25.68万 - 项目类别:
Operating Grants
New Avenues in Axion Cosmology
轴子宇宙学的新途径
- 批准号:
22K03595 - 财政年份:2022
- 资助金额:
$ 25.68万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Systematic Avenues to Sustainable Investing
可持续投资的系统途径
- 批准号:
2717541 - 财政年份:2022
- 资助金额:
$ 25.68万 - 项目类别:
Studentship
PROTAC enabled avenues for nasopharyngeal carcinoma (NPC) immunotherapy
PROTAC 为鼻咽癌 (NPC) 免疫治疗提供了途径
- 批准号:
2601028 - 财政年份:2021
- 资助金额:
$ 25.68万 - 项目类别:
Studentship
Light-Driven Multicomponent C-C Couplings: New Avenues to Bioactive Molecules
光驱动多组分 C-C 联轴器:生物活性分子的新途径
- 批准号:
EP/V006401/1 - 财政年份:2021
- 资助金额:
$ 25.68万 - 项目类别:
Research Grant
Emergence of hydrodynamics in many-body systems: new rigorous avenues from functional analysis
多体系统中流体动力学的出现:功能分析的新严格途径
- 批准号:
EP/W000458/1 - 财政年份:2021
- 资助金额:
$ 25.68万 - 项目类别:
Research Grant
New therapeutic avenues in inflammatory arthritis: exploring the role of the adiponectin-PEPITEM pathway
炎症性关节炎的新治疗途径:探索脂联素-PEPITEM 通路的作用
- 批准号:
MR/T028025/1 - 财政年份:2021
- 资助金额:
$ 25.68万 - 项目类别:
Research Grant
New avenues of multiple sclerosis treatment inspired by pregnancy
受怀孕启发的多发性硬化症治疗新途径
- 批准号:
456055988 - 财政年份:2021
- 资助金额:
$ 25.68万 - 项目类别:
WBP Position
EPRS1-related leukodystrophy: generation of a representative cellular model to study disease pathophysiology and potential therapeutic avenues using patient-derived iPSCs
EPRS1 相关脑白质营养不良:生成代表性细胞模型,利用患者来源的 iPSC 研究疾病病理生理学和潜在治疗途径
- 批准号:
458978 - 财政年份:2021
- 资助金额:
$ 25.68万 - 项目类别:
Studentship Programs














{{item.name}}会员




