Dynamics of inviscid fluids and nonlinear waves

无粘流体动力学和非线性波

基本信息

  • 批准号:
    1362507
  • 负责人:
  • 金额:
    $ 22.73万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-08-01 至 2018-08-31
  • 项目状态:
    已结题

项目摘要

Partial differential equations are widely used to model various problems arising from physics, engineering, biology, finance, etc. The aims of the efforts to understand these mathematical models rigorously are twofold. On the one hand, the physical relevance and the validity of these ideal models are established through the comparison between the results from theoretical analysis and the experimental observations. On the other hand, once the meaningfulness of a mathematical model is supported by available experimental data to certain extent, the theoretical studies on these ideal models can provide properties of the original physical problems that are hard to be obtained through experiments. For physical systems involving temporal evolution, of particular interests are those structural and asymptotic properties. These include some special structures, such as steady states, periodic and quasi-periodic orbits, chaotic orbits etc, and their qualitative properties like stability etc. In general, on the one hand, only stable states are physically observable in a system, while the ideal, but unstable, states are hardly observed due to their extremely sensitive dependence on the parameters. On the other hand, unstable states are also very important, partly due to the fact that they and some of their associated structures serve as the boundaries separating different collections of stable states in a system. In this project, the PI plans to focus on the local dynamics near steady states in several classical nonlinear partial differential equation systems, which all belong to the general category of nonlinear waves. The lack of a priori damping and the complicated nonlinearity pose most of the challenges in their mathematical analysis. More specifically, the PI proposes to study rigorously the local dynamics of the following partial differential equation systems. The first one is the incompressible Euler equation, which models non-viscous and incompressible fluids like water. The proposed problems include fluids in rigid containers and fluids with free surfaces like ocean waves. The second partial differential equation in the proposal is the Vlasov-Poisson system that models the collisionless plasma, which consists of particles with both velocity and electrical charge. The third one is the quasi-linear waves equation. Even though there have been extensive research on these systems and many important progresses have been made in recent year, due to their very nonlinear nature, many issues including some fundamental ones are still not well understood after years of efforts. The PI plans to focus on their local dynamic structures near equillibria, including stability/instability, local invariant manifolds, special solutions and bifurcations. While these aspects are standard notions in the theory of smooth dynamical systems, due to the highly nonlinear nature of these partial differential equations, their solution maps often do not have sufficient smoothness in phase spaces for the classical theory to apply directly. In contrast to ordinary differential equations, the relationship between the qualitative structures and the regularity analysis of these nonlinear partial differential equations is an essential analytical aspect of nonlinear partial differential equation dynamics. Solving and understanding these problems, expected to be largely based on their specific mechanical and geometric structures, would result in substantial theoretical advances in these areas and possibly lead to the discovery of new physical and mathematical phenomena in the corresponding systems.
偏微分方程被广泛用于模拟物理、工程、生物、金融等领域的各种问题。严格理解这些数学模型的努力有两个目的。一方面,通过理论分析结果与实验观测结果的比较,建立了这些理想模型的物理相关性和有效性。另一方面,一旦数学模型的意义在一定程度上得到现有实验数据的支持,对这些理想模型的理论研究就可以提供原始物理问题难以通过实验获得的性质。对于涉及时间演化的物理系统,特别感兴趣的是那些结构和渐近性质。这包括一些特殊的结构,如稳态、周期和准周期轨道、混沌轨道等,以及它们的定性性质,如稳定性等。一般来说,一方面,在一个系统中,只有稳定的状态在物理上是可观察到的,而理想的,但不稳定的状态,由于它们对参数的极其敏感的依赖,很难被观察到。另一方面,不稳定状态也很重要,部分原因是它们和它们的一些相关结构作为分隔系统中不同稳定状态集合的边界。在这个项目中,PI计划重点研究几个经典非线性偏微分方程系统在稳态附近的局部动力学,这些系统都属于非线性波的一般类别。先验阻尼的缺乏和复杂的非线性给其数学分析带来了很大的挑战。更具体地说,PI建议严格研究以下偏微分方程系统的局部动力学。第一个是不可压缩欧拉方程,它模拟了非粘性和不可压缩的流体,如水。提出的问题包括刚性容器中的流体和具有自由表面(如海浪)的流体。提案中的第二个偏微分方程是弗拉索夫-泊松系统,该系统模拟无碰撞等离子体,它由具有速度和电荷的粒子组成。第三种是准线性波动方程。尽管近年来人们对这些系统进行了广泛的研究并取得了许多重要进展,但由于它们的非线性特性,许多问题,包括一些基本问题,经过多年的努力仍然没有得到很好的理解。PI计划关注它们在平衡点附近的局部动力结构,包括稳定/不稳定、局部不变流形、特殊解和分岔。虽然这些方面是光滑动力系统理论中的标准概念,但由于这些偏微分方程的高度非线性性质,它们的解映射通常在相空间中没有足够的光滑性,无法直接应用经典理论。相对于常微分方程,这些非线性偏微分方程的定性结构与正则性分析之间的关系是非线性偏微分方程动力学的一个重要分析方面。解决和理解这些问题,预计将主要基于它们特定的机械和几何结构,将导致这些领域的实质性理论进步,并可能导致在相应系统中发现新的物理和数学现象。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Dynamics near the solitary waves of the supercritical gKDV equations
超临界 gKDV 方程的孤立波附近的动力学
  • DOI:
    10.1016/j.jde.2019.07.019
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Jin, Jiayin;Lin, Zhiwu;Zeng, Chongchun
  • 通讯作者:
    Zeng, Chongchun
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Chongchun Zeng其他文献

Concentrated steady vorticities of the Euler equation on 2-d domains and their linear stability
二维域上欧拉方程的集中稳态涡量及其线性稳定性
  • DOI:
    10.1016/j.jde.2018.11.011
  • 发表时间:
    2018-09
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Yiming Long;Yuchen Wang;Chongchun Zeng
  • 通讯作者:
    Chongchun Zeng
On the Spectra of the Gravity Water Waves Linearized at Monotone Shear Flows
Stability of Traveling Waves of Nonlinear Schr?dinger Equation with Nonzero Condition at Infinity
无穷远非零条件非线性薛定谔方程行波的稳定性
On small breathers of nonlinear Klein-Gordon equations via exponentially small homoclinic splitting
  • DOI:
    10.1007/s00222-025-01327-y
  • 发表时间:
    2025-02-20
  • 期刊:
  • 影响因子:
    3.600
  • 作者:
    Otávio M. L. Gomide;Marcel Guardia;Tere M. Seara;Chongchun Zeng
  • 通讯作者:
    Chongchun Zeng
Solutions of the generalized Lennard-Jones system
广义 Lennard-Jones 系统的解
  • DOI:
    10.1007/s10114-017-7139-6
  • 发表时间:
    2017-11
  • 期刊:
  • 影响因子:
    0.7
  • 作者:
    Bowen Liu;Yiming Long;Chongchun Zeng
  • 通讯作者:
    Chongchun Zeng

Chongchun Zeng的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Chongchun Zeng', 18)}}的其他基金

Dynamics of Fluid and Nonlinear Waves
流体动力学和非线性波
  • 批准号:
    1900083
  • 财政年份:
    2019
  • 资助金额:
    $ 22.73万
  • 项目类别:
    Continuing Grant
The Isentropic Euler Equations and Optimal Transport
等熵欧拉方程和最优输运
  • 批准号:
    1101423
  • 财政年份:
    2011
  • 资助金额:
    $ 22.73万
  • 项目类别:
    Standard Grant
Interface problems in fluids and nonlinear waves
流体和非线性波中的界面问题
  • 批准号:
    0801319
  • 财政年份:
    2008
  • 资助金额:
    $ 22.73万
  • 项目类别:
    Standard Grant
CAREER: Perturbation Problems in PDE Dynamics
职业:偏微分方程动力学中的扰动问题
  • 批准号:
    0627842
  • 财政年份:
    2006
  • 资助金额:
    $ 22.73万
  • 项目类别:
    Continuing Grant
CAREER: Perturbation Problems in PDE Dynamics
职业:偏微分方程动力学中的扰动问题
  • 批准号:
    0239389
  • 财政年份:
    2003
  • 资助金额:
    $ 22.73万
  • 项目类别:
    Continuing Grant
Hamiltonian Motions Under Strong Constrains
强约束下的哈密顿运动
  • 批准号:
    0101969
  • 财政年份:
    2001
  • 资助金额:
    $ 22.73万
  • 项目类别:
    Standard Grant

相似海外基金

The Inviscid Limit and Boundary Layer Theory for Stationary Navier-Stokes Flows
稳态纳维-斯托克斯流的无粘极限和边界层理论
  • 批准号:
    2306528
  • 财政年份:
    2023
  • 资助金额:
    $ 22.73万
  • 项目类别:
    Continuing Grant
Inviscid Limits, Uniqueness, and Anomalous Dissipation in Hydrodynamics
流体动力学中的无粘极限、唯一性和反常耗散
  • 批准号:
    2108573
  • 财政年份:
    2021
  • 资助金额:
    $ 22.73万
  • 项目类别:
    Standard Grant
Inviscid Limits, Uniqueness, and Anomalous Dissipation in Hydrodynamics
流体动力学中的无粘极限、唯一性和反常耗散
  • 批准号:
    2147189
  • 财政年份:
    2021
  • 资助金额:
    $ 22.73万
  • 项目类别:
    Standard Grant
The Inviscid Limit and Large Time Behavior of Fluid Flows
流体流动的无粘极限和长时间行为
  • 批准号:
    1764119
  • 财政年份:
    2018
  • 资助金额:
    $ 22.73万
  • 项目类别:
    Continuing Grant
New Tools in the Study of Wave Propagation: Dynamical Systems for Kinetic Equations, Inviscid Limits for Modulated Periodic Waves, and Rigorous Numerical Stability Analysis
波传播研究的新工具:运动方程的动力系统、调制周期波的无粘极限以及严格的数值稳定性分析
  • 批准号:
    1700279
  • 财政年份:
    2017
  • 资助金额:
    $ 22.73万
  • 项目类别:
    Continuing Grant
New approaches to the construction of efficient high order time integration methods in the context of DG space discretisations for viscous and inviscid fluid flow
在粘性和非粘性流体流动的 DG 空间离散化背景下构建高效高阶时间积分方法的新方法
  • 批准号:
    288967378
  • 财政年份:
    2016
  • 资助金额:
    $ 22.73万
  • 项目类别:
    Research Grants
CAREER: Inviscid Limits and Stability at High Reynolds Numbers
职业:高雷诺数下的无粘极限和稳定性
  • 批准号:
    1552826
  • 财政年份:
    2016
  • 资助金额:
    $ 22.73万
  • 项目类别:
    Continuing Grant
Inviscid wetting and spreading by capillarity: the 'walking' instability
通过毛细作用进行无粘润湿和扩散:“行走”不稳定性
  • 批准号:
    1236582
  • 财政年份:
    2012
  • 资助金额:
    $ 22.73万
  • 项目类别:
    Standard Grant
CAREER: Non-Uniqueness in Inviscid Flow and Algebraic Vortex Spirals
职业:无粘流和代数涡旋的非唯一性
  • 批准号:
    1054115
  • 财政年份:
    2011
  • 资助金额:
    $ 22.73万
  • 项目类别:
    Continuing Grant
Analytical derivation of diffusion coefficient for two-dimensional inviscid point-vortex system in negative absolute temperature
负绝对温度下二维无粘点涡系统扩散系数的解析推导
  • 批准号:
    22740254
  • 财政年份:
    2010
  • 资助金额:
    $ 22.73万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了