Numerical Approximation of Liquid Crystal Flows

液晶流动的数值近似

基本信息

  • 批准号:
    9973285
  • 负责人:
  • 金额:
    $ 16.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1999
  • 资助国家:
    美国
  • 起止时间:
    1999-08-01 至 2003-07-31
  • 项目状态:
    已结题

项目摘要

9973285Technical Description:This project centers around the construction and analysis of algorithms for the simulation of the motion of nematic liquid crystals. Such algorithms will facilitate simulation of the manufacture and operation of devices (such as computer displays) built from liquid crystals. Equations characterizing the motion of liquid crystals were proposed by Ericksen and Leslie in the 1960's; however, until recently there were very few general results concerning the existence, uniqueness, and stability of these equations. Recent discoveries by F. Lin and C. Liu of new energy estimates enables many of these fundamental questions to be answered, which, in turn, facilitates the development and analysis of algorithms for the approximation of these equations. Preliminary results by the author, in collaboration with C. Liu, for a specific instance of the Ericksen--Leslie equations have been very promising, and this proposal outlines a program of research that will result in robust and reliable codes for the simulation of these equations in their full generality.Non-Technical Description:Over the past half century computers have stimulated a major change in the design and manufacture of virtually every industrial product produced in the U.S. Computer simulation of product strength, operation, and performance has replaced much of the expensive prototyping and testing phase required before any product is brought to market. In order to further reduce design and development costs better computer algorithms are required for each step of the manufacturing process, ranging from the simulation of advanced materials to the operation of complex systems. This project plans to draw upon recent theoretical breakthroughs to predict the behavior of materials like those found in modern liquid crystal computer displays. These materials exhibit many complex phenomena, and simulation and prediction of their properties requires modern high performance computers.
9973285技术描述:本项目围绕向列液晶运动模拟算法的构建和分析展开。这样的算法将有助于模拟由液晶构成的设备(如计算机显示器)的制造和操作。表征液晶运动的方程是由Ericksen和Leslie在20世纪60年代提出的;然而,直到最近,很少有关于这些方程的存在性、唯一性和稳定性的一般结果。F. Lin和C. Liu最近关于新能量估计的发现使许多基本问题得以解答,这反过来又促进了这些方程近似算法的开发和分析。作者与C. Liu合作,对Ericksen- Leslie方程的一个具体实例的初步结果非常有希望,本建议概述了一个研究计划,该计划将为这些方程的全面一般性模拟提供鲁棒和可靠的代码。非技术描述:在过去的半个世纪里,计算机已经刺激了美国几乎所有工业产品的设计和制造的重大变化。计算机模拟产品的强度、操作和性能已经取代了任何产品推向市场之前所需的大量昂贵的原型和测试阶段。为了进一步降低设计和开发成本,从先进材料的模拟到复杂系统的操作,制造过程的每一步都需要更好的计算机算法。这个项目计划利用最近的理论突破来预测材料的行为,就像在现代液晶电脑显示器中发现的那样。这些材料表现出许多复杂的现象,其性质的模拟和预测需要现代高性能计算机。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Noel Walkington其他文献

Impact of gas/liquid phase change of COmath xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si226.svg" display="inline" id="d1e554" class="math"msubmrow/mrowmrowmn2/mn/mrow/msub/math during injection for sequestration
注入过程中二氧化碳气/液相变对封存的影响
  • DOI:
    10.1016/j.jmps.2025.106232
  • 发表时间:
    2025-10-01
  • 期刊:
  • 影响因子:
    6.000
  • 作者:
    Mina Karimi;Elizabeth S. Cochran;Mehrdad Massoudi;Noel Walkington;Matteo Pozzi;Kaushik Dayal
  • 通讯作者:
    Kaushik Dayal
Accretion and ablation in deformable solids using an Eulerian formulation: A finite deformation numerical method
使用欧拉公式研究可变形固体的增生与消融:一种有限变形数值方法
  • DOI:
    10.1016/j.jmps.2025.106076
  • 发表时间:
    2025-07-01
  • 期刊:
  • 影响因子:
    6.000
  • 作者:
    S. Kiana Naghibzadeh;Anthony Rollett;Noel Walkington;Kaushik Dayal
  • 通讯作者:
    Kaushik Dayal

Noel Walkington的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Noel Walkington', 18)}}的其他基金

Development and Analysis of Algorithms to Simulate Multi-Component Multi-Phase Porous Flows
模拟多组分多相多孔流的算法的开发和分析
  • 批准号:
    2012259
  • 财政年份:
    2020
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Standard Grant
DMREF: Collaborative Research: Materials Engineering of Columnar and Living Liquid Crystals via Experimental Characterization, Mathematical Modeling, and Simulation
DMREF:协作研究:通过实验表征、数学建模和仿真进行柱状和活性液晶材料工程
  • 批准号:
    1729478
  • 财政年份:
    2017
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Standard Grant
Analysis of Algorithms for Simulating Macroscopic Material Response
宏观材料响应模拟算法分析
  • 批准号:
    1418991
  • 财政年份:
    2014
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Continuing Grant
Analysis of Algorithms for Continuum Models of Complex Materials
复杂材料连续体模型算法分析
  • 批准号:
    1115228
  • 财政年份:
    2011
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Standard Grant
Analysis of Algorithms for Simulating Complex Materials
复杂材料模拟算法分析
  • 批准号:
    0811029
  • 财政年份:
    2008
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Continuing Grant
Algorithms for Simulating Flows with Elastic Components
模拟弹性组件流动的算法
  • 批准号:
    0511309
  • 财政年份:
    2005
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Standard Grant
Algorithms for Simulating Flows of Complex Fluids: Fluid-Solid Mixtures and Liquid Crystals
模拟复杂流体流动的算法:流固混合物和液晶
  • 批准号:
    0208586
  • 财政年份:
    2002
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Construction and Analysis of Algorithms for Degenerate Variational and Parabolic Problems
数学科学:退化变分和抛物型问题算法的构建和分析
  • 批准号:
    9504492
  • 财政年份:
    1995
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Calculation of Young Measure Valued Solutions Arising in the Calculus of Variations
数学科学:变分法中产生的杨测值解的计算
  • 批准号:
    9203406
  • 财政年份:
    1992
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Analysis & Calculation of Solutions to the Acoustics Equations
数学科学:分析
  • 批准号:
    9002768
  • 财政年份:
    1990
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Continuing Grant

相似海外基金

High Dimensional Approximation, Learning, and Uncertainty
高维近似、学习和不确定性
  • 批准号:
    DP240100769
  • 财政年份:
    2024
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Discovery Projects
Approximation theory of structured neural networks
结构化神经网络的逼近理论
  • 批准号:
    DP240101919
  • 财政年份:
    2024
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Discovery Projects
Approximation properties in von Neumann algebras
冯·诺依曼代数中的近似性质
  • 批准号:
    2400040
  • 财政年份:
    2024
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Standard Grant
Approximation of transport maps from local and non-local Monge-Ampere equations
根据局部和非局部 Monge-Ampere 方程近似输运图
  • 批准号:
    2308856
  • 财政年份:
    2023
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Data Driven Modeling and Analysis of Energy Conversion Systems -- Manifold Learning and Approximation
合作研究:CPS:媒介:能量转换系统的数据驱动建模和分析——流形学习和逼近
  • 批准号:
    2223987
  • 财政年份:
    2023
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Standard Grant
A Lebesgue Integral based Approximation for Language Modelling
基于勒贝格积分的语言建模近似
  • 批准号:
    EP/X019063/1
  • 财政年份:
    2023
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Research Grant
Collaborative Research: CPS: Medium: Data Driven Modeling and Analysis of Energy Conversion Systems -- Manifold Learning and Approximation
合作研究:CPS:媒介:能量转换系统的数据驱动建模和分析——流形学习和逼近
  • 批准号:
    2223985
  • 财政年份:
    2023
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Data Driven Modeling and Analysis of Energy Conversion Systems -- Manifold Learning and Approximation
合作研究:CPS:媒介:能量转换系统的数据驱动建模和分析——流形学习和逼近
  • 批准号:
    2223986
  • 财政年份:
    2023
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Standard Grant
Lp-Approximation Properties, Multipliers, and Quantized Calculus
Lp 近似属性、乘子和量化微积分
  • 批准号:
    2247123
  • 财政年份:
    2023
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Standard Grant
Development of a novel best approximation theory with applications
开发一种新颖的最佳逼近理论及其应用
  • 批准号:
    DP230102079
  • 财政年份:
    2023
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Discovery Projects
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了