Analysis of Algorithms for Simulating Complex Materials

复杂材料模拟算法分析

基本信息

  • 批准号:
    0811029
  • 负责人:
  • 金额:
    $ 40.06万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-07-01 至 2011-06-30
  • 项目状态:
    已结题

项目摘要

The focus of this project is the development and analysis of numericalalgorithms to simulate materials which exhibit intricate rheologicalbehavior or mechanical response due to their microstructuralmakeup. For example, elastic properties of particulates, molecules, orcells of a material frequently influence the macroscopic properties.These materials are modeled by formidable systems of partialdifferential equations, and it is important to develop numericalschemes to faithfully represent the mathematical structure of thesemodels. Tools from partial differential equations, continuummechanics, and numerical analysis, will be used to analyze numericalschemes to simulate these systems. Past experience has shown that newmathematical tools can lead to numerical schemes which inheritimportant structural properties of these models, and that a deeperunderstanding of the current schemes frequently leads to improved andsimpler algorithms.Essentially all biological and manufactured materials exhibit complexmacroscopic behavior due to their fine scale makeup. Examples includemicro electromechanical systems (MEMS); biological fluids; ink for inkjet devices; semiconductors; liquid crystals; and metals undergoingplastic deformation. Predicting material response is an essentialtechnology needed to determine biological or physiological function;or to design and manufacture these materials; or for the design of themultitudes of devices which use their special properties. Thisresearch will improve our understanding of the mathematical models andthe computational tools used to accomplish these tasks. The equationsused to model such phenomena are complex and poorly understood, andmuch of the research is directed to revealing the theoretical(mathematical) properties of these models. This work complements themore practical approaches undertaken in the engineering community andat the national laboratories.
该项目的重点是数值算法的开发和分析,以模拟由于其微观结构组成而表现出复杂流变行为或机械响应的材料。例如,一种材料的微粒、分子或细胞的弹性特性经常会影响其宏观特性。这些材料都是由强大的偏微分方程系统来模拟的,因此,发展数值方案来忠实地表示这些模型的数学结构是很重要的。 工具从偏微分方程,连续力学和数值分析,将被用来分析numericalschemes来模拟这些系统。过去的经验表明,新的数学工具可以产生继承这些模型的重要结构特性的数值方案,而对现有方案的深入理解往往会产生改进和更简单的算法。基本上所有的生物和人工材料由于其精细的尺度组成而表现出复杂的宏观行为。例子包括微机电系统(MEMS);生物流体;喷墨设备的墨水;半导体;液晶;和经历塑性变形的金属。 预测材料响应是确定生物或生理功能,或设计和制造这些材料,或设计使用其特殊性能的设备所需的基本技术。这项研究将提高我们对数学模型和用于完成这些任务的计算工具的理解。 用于模拟这种现象的方程很复杂,而且人们对它的理解也很有限,许多研究都是为了揭示这些模型的理论(数学)性质。这项工作补充了工程界和国家实验室采取的更实用的方法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Noel Walkington其他文献

Impact of gas/liquid phase change of COmath xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si226.svg" display="inline" id="d1e554" class="math"msubmrow/mrowmrowmn2/mn/mrow/msub/math during injection for sequestration
注入过程中二氧化碳气/液相变对封存的影响
  • DOI:
    10.1016/j.jmps.2025.106232
  • 发表时间:
    2025-10-01
  • 期刊:
  • 影响因子:
    6.000
  • 作者:
    Mina Karimi;Elizabeth S. Cochran;Mehrdad Massoudi;Noel Walkington;Matteo Pozzi;Kaushik Dayal
  • 通讯作者:
    Kaushik Dayal
Accretion and ablation in deformable solids using an Eulerian formulation: A finite deformation numerical method
使用欧拉公式研究可变形固体的增生与消融:一种有限变形数值方法
  • DOI:
    10.1016/j.jmps.2025.106076
  • 发表时间:
    2025-07-01
  • 期刊:
  • 影响因子:
    6.000
  • 作者:
    S. Kiana Naghibzadeh;Anthony Rollett;Noel Walkington;Kaushik Dayal
  • 通讯作者:
    Kaushik Dayal

Noel Walkington的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Noel Walkington', 18)}}的其他基金

Development and Analysis of Algorithms to Simulate Multi-Component Multi-Phase Porous Flows
模拟多组分多相多孔流的算法的开发和分析
  • 批准号:
    2012259
  • 财政年份:
    2020
  • 资助金额:
    $ 40.06万
  • 项目类别:
    Standard Grant
DMREF: Collaborative Research: Materials Engineering of Columnar and Living Liquid Crystals via Experimental Characterization, Mathematical Modeling, and Simulation
DMREF:协作研究:通过实验表征、数学建模和仿真进行柱状和活性液晶材料工程
  • 批准号:
    1729478
  • 财政年份:
    2017
  • 资助金额:
    $ 40.06万
  • 项目类别:
    Standard Grant
Analysis of Algorithms for Simulating Macroscopic Material Response
宏观材料响应模拟算法分析
  • 批准号:
    1418991
  • 财政年份:
    2014
  • 资助金额:
    $ 40.06万
  • 项目类别:
    Continuing Grant
Analysis of Algorithms for Continuum Models of Complex Materials
复杂材料连续体模型算法分析
  • 批准号:
    1115228
  • 财政年份:
    2011
  • 资助金额:
    $ 40.06万
  • 项目类别:
    Standard Grant
Algorithms for Simulating Flows with Elastic Components
模拟弹性组件流动的算法
  • 批准号:
    0511309
  • 财政年份:
    2005
  • 资助金额:
    $ 40.06万
  • 项目类别:
    Standard Grant
Algorithms for Simulating Flows of Complex Fluids: Fluid-Solid Mixtures and Liquid Crystals
模拟复杂流体流动的算法:流固混合物和液晶
  • 批准号:
    0208586
  • 财政年份:
    2002
  • 资助金额:
    $ 40.06万
  • 项目类别:
    Standard Grant
Numerical Approximation of Liquid Crystal Flows
液晶流动的数值近似
  • 批准号:
    9973285
  • 财政年份:
    1999
  • 资助金额:
    $ 40.06万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Construction and Analysis of Algorithms for Degenerate Variational and Parabolic Problems
数学科学:退化变分和抛物型问题算法的构建和分析
  • 批准号:
    9504492
  • 财政年份:
    1995
  • 资助金额:
    $ 40.06万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Calculation of Young Measure Valued Solutions Arising in the Calculus of Variations
数学科学:变分法中产生的杨测值解的计算
  • 批准号:
    9203406
  • 财政年份:
    1992
  • 资助金额:
    $ 40.06万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Analysis & Calculation of Solutions to the Acoustics Equations
数学科学:分析
  • 批准号:
    9002768
  • 财政年份:
    1990
  • 资助金额:
    $ 40.06万
  • 项目类别:
    Continuing Grant

相似海外基金

EAGER: QAC: QCH: Holographic Quantum Algorithms for Simulating Many-Body Systems
EAGER:QAC:QCH:用于模拟多体系统的全息量子算法
  • 批准号:
    2038032
  • 财政年份:
    2020
  • 资助金额:
    $ 40.06万
  • 项目类别:
    Standard Grant
Fast Algorithms for Simulating the Collective Swimming of Microorganisms
模拟微生物集体游泳的快速算法
  • 批准号:
    1818833
  • 财政年份:
    2018
  • 资助金额:
    $ 40.06万
  • 项目类别:
    Standard Grant
CCF: AF: Small: Simulating Hamiltonian dynamics: Algorithms and applications
CCF:AF:小:模拟哈密顿动力学:算法和应用
  • 批准号:
    1526380
  • 财政年份:
    2015
  • 资助金额:
    $ 40.06万
  • 项目类别:
    Standard Grant
Analysis of Algorithms for Simulating Macroscopic Material Response
宏观材料响应模拟算法分析
  • 批准号:
    1418991
  • 财政年份:
    2014
  • 资助金额:
    $ 40.06万
  • 项目类别:
    Continuing Grant
Algorithms for Simulating Flows with Elastic Components
模拟弹性组件流动的算法
  • 批准号:
    0511309
  • 财政年份:
    2005
  • 资助金额:
    $ 40.06万
  • 项目类别:
    Standard Grant
Algorithms for Simulating Flows of Complex Fluids: Fluid-Solid Mixtures and Liquid Crystals
模拟复杂流体流动的算法:流固混合物和液晶
  • 批准号:
    0208586
  • 财政年份:
    2002
  • 资助金额:
    $ 40.06万
  • 项目类别:
    Standard Grant
Design and implementation of real-time algorithms for simulating the dynamics of colliding rigid bodies
刚体碰撞动力学模拟实时算法的设计与实现
  • 批准号:
    5238146
  • 财政年份:
    2000
  • 资助金额:
    $ 40.06万
  • 项目类别:
    Research Grants
Hierarchical, Parallel Algorithms for Simulating Plant Response to Environmental Stress (RUI)
用于模拟植物对环境压力响应 (RUI) 的分层并行算法
  • 批准号:
    9723595
  • 财政年份:
    1997
  • 资助金额:
    $ 40.06万
  • 项目类别:
    Standard Grant
University - Industry Cooperative Research Programs in the Mathematical Sciences: Novel Parallel Molecular Dynamics Algorithms for Simulating Thin-film Depositions
数学科学领域的产学合作研究项目:用于模拟薄膜沉积的新型并行分子动力学算法
  • 批准号:
    9626859
  • 财政年份:
    1996
  • 资助金额:
    $ 40.06万
  • 项目类别:
    Standard Grant
SFB 382: Methods and Algorithms for Simulating Physical Processes on Supercomputers
SFB 382:在超级计算机上模拟物理过程的方法和算法
  • 批准号:
    5479426
  • 财政年份:
    1994
  • 资助金额:
    $ 40.06万
  • 项目类别:
    Collaborative Research Centres
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了