Analysis of Algorithms for Simulating Macroscopic Material Response

宏观材料响应模拟算法分析

基本信息

  • 批准号:
    1418991
  • 负责人:
  • 金额:
    $ 33万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-07-15 至 2017-06-30
  • 项目状态:
    已结题

项目摘要

The very essence of science is to explain and understand natural phenomena in order to predict and forecast outcomes. The most successful predictions result when fundamental laws of nature are integrated into conceptual models of the phenomena of interest. Newton's development of mathematical tools to express many fundamental laws of nature has resulted in mathematical models with unparalleled predictive power. These models consist of complex systems of equations relating the physical quantities of interest and form the conceptual foundation of modern engineering and science. Solution of these complex systems of equations is a key technology needed to realize the potential of these theories, and the computational tools under investigation in this project are indispensable in this step of the modeling process. This project will enhance the computational tools used to simulate materials such as polymers, liquid crystals, and many biological components. Improved predictive capability of computational models will play an essential role in the development and manufacture of many next generation devices such as micro-mechanical devices, biological materials, and prosthetic organs. Predicting material response is essential to determine biological and/or physiological function, reliability, and durability of these devices. In addition to the technological developments, this project will also support the education and training of the next generation of scientists needed sustain the remarkable pace of discovery and our scientific leadership in these disciplines. The focus of this proposal is the development and analysis of numerical schemes to simulate materials whose macroscopic response depends upon the state of their fine scale structure. This scenario is typical when material particles exhibit elasticity, attraction and/or repulsion, entropic interactions which can result in phase formation, and internal dissipation. At the macroscopic scale these effects are modeled with internal variables which couple to the dynamic equations of motion. This multi-scale character gives rise to many modeling, mathematical, and numerical challenges. Models of materials with microstructure involve formidable systems of partial differential equations which inherit the delicate balance between transport and inertial effects, configurational energy, and dissipation of the physical system. While the past two decades have witnessed the development of many algorithms and codes in the engineering and scientific computing communities to solve these equations, there are many gaps in the mathematical theory and very little analysis of their fundamental properties is available. In this situation is important to develop numerical schemes which faithfully inherit the complex interactions of the physical system. Experience has shown that this paradigm can lead to a deeper understanding of the current schemes and frequently leads to improved and simpler algorithms. This project will bring together tools from partial differential equations, continuum mechanics, and numerical analysis, to develop and analyze numerical schemes which simulate these systems.
科学的本质是解释和理解自然现象,以预测和预测结果。最成功的预测结果时,自然的基本规律被整合到感兴趣的现象的概念模型。牛顿发展数学工具来表达许多基本的自然规律,导致数学模型具有无与伦比的预测能力。这些模型由与感兴趣的物理量相关的复杂方程组组成,构成了现代工程和科学的概念基础。 这些复杂的方程组的解决方案是实现这些理论的潜力所需的关键技术,并且在该项目中正在调查的计算工具在建模过程的这一步骤中是不可或缺的。 该项目将增强用于模拟聚合物,液晶和许多生物成分等材料的计算工具。计算模型的预测能力的提高将在许多下一代器件的开发和制造中发挥重要作用,例如微机械器件、生物材料和假体器官。预测材料反应对于确定这些器械的生物和/或生理功能、可靠性和耐久性至关重要。除了技术发展外,该项目还将支持下一代科学家的教育和培训,以维持发现的显着步伐和我们在这些学科中的科学领导地位。 该提案的重点是数值方案的开发和分析,以模拟其宏观响应取决于其细尺度结构状态的材料。当材料颗粒表现出弹性、吸引力和/或排斥力、熵相互作用(其可导致相形成和内部耗散)时,这种情况是典型的。 在宏观尺度上,这些影响与耦合到运动的动力学方程的内部变量进行建模。 这种多尺度特征带来了许多建模、数学和数值挑战。 具有微观结构的材料模型涉及强大的偏微分方程系统,该系统继承了物理系统的传输和惯性效应、构型能量和耗散之间的微妙平衡。虽然在过去的二十年里,工程和科学计算界已经开发了许多算法和代码来解决这些方程,但数学理论中存在许多空白,并且对其基本属性的分析很少。 在这种情况下,重要的是开发数值方案,忠实地继承复杂的相互作用的物理系统。 经验表明,这种模式可以导致更深入地了解目前的计划,并经常导致改进和更简单的算法。 这个项目将汇集偏微分方程,连续介质力学和数值分析的工具,开发和分析模拟这些系统的数值方案。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Noel Walkington其他文献

Impact of gas/liquid phase change of COmath xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si226.svg" display="inline" id="d1e554" class="math"msubmrow/mrowmrowmn2/mn/mrow/msub/math during injection for sequestration
注入过程中二氧化碳气/液相变对封存的影响
  • DOI:
    10.1016/j.jmps.2025.106232
  • 发表时间:
    2025-10-01
  • 期刊:
  • 影响因子:
    6.000
  • 作者:
    Mina Karimi;Elizabeth S. Cochran;Mehrdad Massoudi;Noel Walkington;Matteo Pozzi;Kaushik Dayal
  • 通讯作者:
    Kaushik Dayal
Accretion and ablation in deformable solids using an Eulerian formulation: A finite deformation numerical method
使用欧拉公式研究可变形固体的增生与消融:一种有限变形数值方法
  • DOI:
    10.1016/j.jmps.2025.106076
  • 发表时间:
    2025-07-01
  • 期刊:
  • 影响因子:
    6.000
  • 作者:
    S. Kiana Naghibzadeh;Anthony Rollett;Noel Walkington;Kaushik Dayal
  • 通讯作者:
    Kaushik Dayal

Noel Walkington的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Noel Walkington', 18)}}的其他基金

Development and Analysis of Algorithms to Simulate Multi-Component Multi-Phase Porous Flows
模拟多组分多相多孔流的算法的开发和分析
  • 批准号:
    2012259
  • 财政年份:
    2020
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
DMREF: Collaborative Research: Materials Engineering of Columnar and Living Liquid Crystals via Experimental Characterization, Mathematical Modeling, and Simulation
DMREF:协作研究:通过实验表征、数学建模和仿真进行柱状和活性液晶材料工程
  • 批准号:
    1729478
  • 财政年份:
    2017
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
Analysis of Algorithms for Continuum Models of Complex Materials
复杂材料连续体模型算法分析
  • 批准号:
    1115228
  • 财政年份:
    2011
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
Analysis of Algorithms for Simulating Complex Materials
复杂材料模拟算法分析
  • 批准号:
    0811029
  • 财政年份:
    2008
  • 资助金额:
    $ 33万
  • 项目类别:
    Continuing Grant
Algorithms for Simulating Flows with Elastic Components
模拟弹性组件流动的算法
  • 批准号:
    0511309
  • 财政年份:
    2005
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
Algorithms for Simulating Flows of Complex Fluids: Fluid-Solid Mixtures and Liquid Crystals
模拟复杂流体流动的算法:流固混合物和液晶
  • 批准号:
    0208586
  • 财政年份:
    2002
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
Numerical Approximation of Liquid Crystal Flows
液晶流动的数值近似
  • 批准号:
    9973285
  • 财政年份:
    1999
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Construction and Analysis of Algorithms for Degenerate Variational and Parabolic Problems
数学科学:退化变分和抛物型问题算法的构建和分析
  • 批准号:
    9504492
  • 财政年份:
    1995
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Calculation of Young Measure Valued Solutions Arising in the Calculus of Variations
数学科学:变分法中产生的杨测值解的计算
  • 批准号:
    9203406
  • 财政年份:
    1992
  • 资助金额:
    $ 33万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Analysis & Calculation of Solutions to the Acoustics Equations
数学科学:分析
  • 批准号:
    9002768
  • 财政年份:
    1990
  • 资助金额:
    $ 33万
  • 项目类别:
    Continuing Grant

相似海外基金

EAGER: QAC: QCH: Holographic Quantum Algorithms for Simulating Many-Body Systems
EAGER:QAC:QCH:用于模拟多体系统的全息量子算法
  • 批准号:
    2038032
  • 财政年份:
    2020
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
Fast Algorithms for Simulating the Collective Swimming of Microorganisms
模拟微生物集体游泳的快速算法
  • 批准号:
    1818833
  • 财政年份:
    2018
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
CCF: AF: Small: Simulating Hamiltonian dynamics: Algorithms and applications
CCF:AF:小:模拟哈密顿动力学:算法和应用
  • 批准号:
    1526380
  • 财政年份:
    2015
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
Analysis of Algorithms for Simulating Complex Materials
复杂材料模拟算法分析
  • 批准号:
    0811029
  • 财政年份:
    2008
  • 资助金额:
    $ 33万
  • 项目类别:
    Continuing Grant
Algorithms for Simulating Flows with Elastic Components
模拟弹性组件流动的算法
  • 批准号:
    0511309
  • 财政年份:
    2005
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
Algorithms for Simulating Flows of Complex Fluids: Fluid-Solid Mixtures and Liquid Crystals
模拟复杂流体流动的算法:流固混合物和液晶
  • 批准号:
    0208586
  • 财政年份:
    2002
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
Design and implementation of real-time algorithms for simulating the dynamics of colliding rigid bodies
刚体碰撞动力学模拟实时算法的设计与实现
  • 批准号:
    5238146
  • 财政年份:
    2000
  • 资助金额:
    $ 33万
  • 项目类别:
    Research Grants
Hierarchical, Parallel Algorithms for Simulating Plant Response to Environmental Stress (RUI)
用于模拟植物对环境压力响应 (RUI) 的分层并行算法
  • 批准号:
    9723595
  • 财政年份:
    1997
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
University - Industry Cooperative Research Programs in the Mathematical Sciences: Novel Parallel Molecular Dynamics Algorithms for Simulating Thin-film Depositions
数学科学领域的产学合作研究项目:用于模拟薄膜沉积的新型并行分子动力学算法
  • 批准号:
    9626859
  • 财政年份:
    1996
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
SFB 382: Methods and Algorithms for Simulating Physical Processes on Supercomputers
SFB 382:在超级计算机上模拟物理过程的方法和算法
  • 批准号:
    5479426
  • 财政年份:
    1994
  • 资助金额:
    $ 33万
  • 项目类别:
    Collaborative Research Centres
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了