Development and Analysis of Algorithms to Simulate Multi-Component Multi-Phase Porous Flows

模拟多组分多相多孔流的算法的开发和分析

基本信息

  • 批准号:
    2012259
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-08-01 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

One of the goals of science is to understand and explain natural phenomena in order to predict and forecast outcomes. The continual development of mathematical tools to express many of the fundamental laws of nature has resulted in models with unparalleled predictive power. Mathematical models involve complex systems of equations expressing the physical processes of interest, and form the conceptual foundation of modern engineering and science. These equations exhibit all of the depth, difficulties, and subtleties of the physical systems being modeled, and sophisticated computational methodologies are required for their solution. This project focuses on the development of computational tools and software that engineers and scientists need to simulate problems arising in geology. One of the physical problems motivating this work is the need to model deep sea beds and permafrost regions where vast quantities of frozen methane, carbon dioxide, and other gases are trapped. These gases diffuse from deep within the earth and get trapped in permafrost, under glaciers, and in the cold depths of the deep ocean where they may freeze. Predicting the evolving state of these regions through geologic cycles and changes in climate is essential for environmental modeling. This project will develop and analyze computational tools and software required to model these regions where multiple fluids and gases undergo freezing, thawing, and dissolution as they flow. In addition to the technological developments, this project will also support the education and training of the next generation of scientists needed to sustain discovery and scientific leadership in these disciplines.The work proposed centers around the development and analysis of computational tools needed to simulate flows in porous media containing multiple fluids, which may combine to form multiple phases and states (solid, liquid, gas). The thermodynamics of mixtures and phase changes is used to model the properties and states of the fluids at the pore scale, which appear constitutively in the macroscopic balance law of mass, momentum, and energy. This proposal focuses on the challenging problem of integrating pore scale and continuum models of these systems into a consistent framework where computational tools can be utilized to simulate these complex physical problems. Convexity and homogeneity of the free energy (or concavity of entropy) enter these models in a subtle way, and are essential for proving stability of solutions. Numerical schemes will be developed that faithfully inherit these important attributes; in addition, convexity properties will be exploited to facilitate robust algorithms for the solution of the nonlinear systems that arise. Development of mathematical tools required to analyze the stability, robustness, convergence, and correctness of these algorithms will be undertaken.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
科学的目标之一是理解和解释自然现象,以预测和预测结果。数学工具的不断发展,表达了许多基本的自然规律,导致模型具有无与伦比的预测能力。数学模型涉及表达感兴趣的物理过程的复杂方程系统,并形成现代工程和科学的概念基础。这些方程展示了所有的深度,困难,和被建模的物理系统的微妙之处,和复杂的计算方法,需要他们的解决方案。该项目的重点是开发工程师和科学家模拟地质学问题所需的计算工具和软件。推动这项工作的物理问题之一是需要模拟深海床和永久冻土区,那里有大量冻结的甲烷,二氧化碳和其他气体。这些气体从地球深处扩散,被困在永久冻土层、冰川下和深海的寒冷深处,在那里它们可能会冻结。通过地质循环和气候变化预测这些地区的演变状态对于环境建模至关重要。该项目将开发和分析模拟这些区域所需的计算工具和软件,其中多种流体和气体在流动时经历冻结,解冻和溶解。除了技术发展外,该项目还将支持对维持这些学科的发现和科学领导力所需的下一代科学家的教育和培训。拟议的工作集中在模拟流动所需的计算工具的开发和分析。包含多种流体的多孔介质中,这些流体可能联合收割机形成多个相和状态(固体、液体、气体)。混合物和相变的热力学被用来模拟孔隙尺度下流体的性质和状态,这些性质和状态在质量、动量和能量的宏观平衡定律中组成性地出现。该建议的重点是将这些系统的孔隙尺度和连续模型集成到一个一致的框架中,在这个框架中可以利用计算工具来模拟这些复杂的物理问题。 自由能的凸性和均匀性(或熵的平方)以一种微妙的方式进入这些模型,并且对于证明解的稳定性是必不可少的。数值计划将开发,忠实地继承这些重要的属性,此外,凸属性将被利用,以促进强大的算法,解决出现的非线性系统。该奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Surface Growth in Deformable Solids using an Eulerian Formulation
使用欧拉公式在可变形固体中进行表面生长
Models of bacteria swimming in a nematic liquid crystal
细菌在向列液晶中游泳的模型
  • DOI:
    10.1090/qam/1598
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Duan, Mochong;Walkington, Noel J.
  • 通讯作者:
    Walkington, Noel J.
Accretion and ablation in deformable solids with an Eulerian description: examples using the method of characteristics
具有欧拉描述的可变形固体中的吸积和烧蚀:使用特征方法的示例
  • DOI:
    10.1177/10812865211054573
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    Naghibzadeh, S Kiana;Walkington, Noel;Dayal, Kaushik
  • 通讯作者:
    Dayal, Kaushik
Multi-component Multiphase Porous Flow
多组分多相多孔流
Numerical approximation of nonlinear SPDE’s
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Noel Walkington其他文献

Impact of gas/liquid phase change of COmath xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si226.svg" display="inline" id="d1e554" class="math"msubmrow/mrowmrowmn2/mn/mrow/msub/math during injection for sequestration
注入过程中二氧化碳气/液相变对封存的影响
  • DOI:
    10.1016/j.jmps.2025.106232
  • 发表时间:
    2025-10-01
  • 期刊:
  • 影响因子:
    6.000
  • 作者:
    Mina Karimi;Elizabeth S. Cochran;Mehrdad Massoudi;Noel Walkington;Matteo Pozzi;Kaushik Dayal
  • 通讯作者:
    Kaushik Dayal
Accretion and ablation in deformable solids using an Eulerian formulation: A finite deformation numerical method
使用欧拉公式研究可变形固体的增生与消融:一种有限变形数值方法
  • DOI:
    10.1016/j.jmps.2025.106076
  • 发表时间:
    2025-07-01
  • 期刊:
  • 影响因子:
    6.000
  • 作者:
    S. Kiana Naghibzadeh;Anthony Rollett;Noel Walkington;Kaushik Dayal
  • 通讯作者:
    Kaushik Dayal

Noel Walkington的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Noel Walkington', 18)}}的其他基金

DMREF: Collaborative Research: Materials Engineering of Columnar and Living Liquid Crystals via Experimental Characterization, Mathematical Modeling, and Simulation
DMREF:协作研究:通过实验表征、数学建模和仿真进行柱状和活性液晶材料工程
  • 批准号:
    1729478
  • 财政年份:
    2017
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Analysis of Algorithms for Simulating Macroscopic Material Response
宏观材料响应模拟算法分析
  • 批准号:
    1418991
  • 财政年份:
    2014
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Analysis of Algorithms for Continuum Models of Complex Materials
复杂材料连续体模型算法分析
  • 批准号:
    1115228
  • 财政年份:
    2011
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Analysis of Algorithms for Simulating Complex Materials
复杂材料模拟算法分析
  • 批准号:
    0811029
  • 财政年份:
    2008
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Algorithms for Simulating Flows with Elastic Components
模拟弹性组件流动的算法
  • 批准号:
    0511309
  • 财政年份:
    2005
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Algorithms for Simulating Flows of Complex Fluids: Fluid-Solid Mixtures and Liquid Crystals
模拟复杂流体流动的算法:流固混合物和液晶
  • 批准号:
    0208586
  • 财政年份:
    2002
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Numerical Approximation of Liquid Crystal Flows
液晶流动的数值近似
  • 批准号:
    9973285
  • 财政年份:
    1999
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Construction and Analysis of Algorithms for Degenerate Variational and Parabolic Problems
数学科学:退化变分和抛物型问题算法的构建和分析
  • 批准号:
    9504492
  • 财政年份:
    1995
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Calculation of Young Measure Valued Solutions Arising in the Calculus of Variations
数学科学:变分法中产生的杨测值解的计算
  • 批准号:
    9203406
  • 财政年份:
    1992
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Analysis & Calculation of Solutions to the Acoustics Equations
数学科学:分析
  • 批准号:
    9002768
  • 财政年份:
    1990
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
  • 批准号:
    41601604
  • 批准年份:
    2016
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
  • 批准号:
    31100958
  • 批准年份:
    2011
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
  • 批准号:
    30470153
  • 批准年份:
    2004
  • 资助金额:
    22.0 万元
  • 项目类别:
    面上项目

相似海外基金

Development of Classroom Utterance Analysis System Using Advanced Algorithms
利用先进算法开发课堂话语分析系统
  • 批准号:
    23K11378
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of Image Analysis Algorithms for Computational Assessment of Cardiac Structure and Function
用于心脏结构和功能计算评估的图像分析算法的开发
  • 批准号:
    RGPIN-2016-06270
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Discovery Grants Program - Individual
Development of signal processing algorithms for wearable, sleep-analysis devices
开发可穿戴睡眠分析设备的信号处理算法
  • 批准号:
    573925-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    University Undergraduate Student Research Awards
Development of Evolutionary Multiobjective Optimization Algorithms and Benchmark Problem Design based on the Analysis of Real-world Problems
基于实际问题分析的进化多目标优化算法和基准问题设计的开发
  • 批准号:
    22H03664
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Deep learning tools for the automated analysis of hematopathology whole slide images and the development of prognostic algorithms for hematopoietic stem cell transplant recipients
用于自动分析血液病理学全幻灯片图像和开发造血干细胞移植受者预后算法的深度学习工具
  • 批准号:
    10286424
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
Development of Image Analysis Algorithms for Computational Assessment of Cardiac Structure and Function
用于心脏结构和功能计算评估的图像分析算法的开发
  • 批准号:
    RGPIN-2016-06270
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
    Discovery Grants Program - Individual
Establishment of new goinoscopic methods and development of automatic analysis algorithms using 360-degree gonioscopic images
建立新的前房角镜方法并开发使用360度前房角镜图像的自动分析算法
  • 批准号:
    20K18382
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Development of Image Analysis Algorithms for Computational Assessment of Cardiac Structure and Function
用于心脏结构和功能计算评估的图像分析算法的开发
  • 批准号:
    RGPIN-2016-06270
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Discovery Grants Program - Individual
Development of Image Analysis Algorithms for Computational Assessment of Cardiac Structure and Function
用于心脏结构和功能计算评估的图像分析算法的开发
  • 批准号:
    RGPIN-2016-06270
  • 财政年份:
    2019
  • 资助金额:
    $ 40万
  • 项目类别:
    Discovery Grants Program - Individual
Development of algorithms for the conception and the analysis of graphs and complex networks
开发图形和复杂网络的概念和分析算法
  • 批准号:
    RGPIN-2015-04945
  • 财政年份:
    2019
  • 资助金额:
    $ 40万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了