POWRE: Analysis of Space-clamp Errors in Voltage-clamp Experiments on an Extended Neuron

POWRE:扩展神经元电压钳实验中的空间钳误差分析

基本信息

  • 批准号:
    9973306
  • 负责人:
  • 金额:
    $ 7.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1999
  • 资助国家:
    美国
  • 起止时间:
    1999-08-15 至 2002-07-31
  • 项目状态:
    已结题

项目摘要

The goal of this research project is to better understand a serious type of error that can arise when an important measurement procedure (the "voltage clamp") is used in experimental neurophysiology and biophysics. Voltage-clamp methods are widely used to characterize quantitatively properties of ionic channels in neurons. An intrinsic defect in the procedure gives rise to what are termed "space-clamp errors" when the voltage clamp is applied to certain cells. In order for the voltage clamp to yield an accurate measurement of ionic conductance across a cell membrane, the current must be measured across a patch of membrane with no spatial variation in the voltage. However, in many research applications there is no practical way of achieving spatial uniformity of potential. In neurophysiology, for example, axons and dendrites attached to a nerve-cell body (i.e., long or "extended" neurons) are a common source of spatial voltage variation. It is sometimes possible to modify the experimental procedure in order to reduce space-clamp errors; however, the results are not always satisfactory, and the scope of such modification is limited. An alternative is post-experimental analysis and correction based on mathematical models and computer simulation. This project will carry out such an analysis. In particular: (1) computer simulations will be carried out for space-clamp errors arising from voltage clamp of a simplified model of an extended neuron; and (2) mathematical models of a neuron with active ionic channels will be developed based on modifications of the "cable equations," which were originally developed for membranes with no active channels. The results of the simulations, and the fitted mathematical models, will then be subjected to analysis in order that the nature and magnitude of space-clamp errors can be assessed, and that criteria for recognition of, and correction for, these errors can be developed.This POWRE project will enable Dr. Castelfranco to return to a research program in mathematical neurophysiology consistent with her training and scientific interests, following an involuntary hiatus of several years. Moreover, it will transform her official status within her home institution to one that will increase her access to resources and raise the visibility of her research.
本研究项目的目标是更好地了解在实验神经生理学和生物物理学中使用重要的测量程序(“电压钳”)时可能出现的严重类型的错误。电压钳方法被广泛用于定量表征神经元中离子通道的特性。当电压钳位施加到某些单元时,该过程中的固有缺陷会引起所谓的“空间钳位误差”。为了使电压钳准确地测量细胞膜上的离子电导,必须测量电压没有空间变化的膜片上的电流。然而,在许多研究应用中,没有一种实用的方法来实现位势的空间一致性。例如,在神经生理学中,附着在神经细胞体上的轴突和树突(即长的或“延伸的”神经元)是空间电压变化的常见来源。有时可以修改实验程序以减少空间钳位误差;然而,结果并不总是令人满意的,这种修改的范围是有限的。另一种选择是基于数学模型和计算机模拟的实验后分析和修正。本项目将进行这样的分析。具体地说:(1)将对扩展神经元简化模型的电压钳位引起的空间钳位误差进行计算机模拟;(2)将基于对最初为没有活性通道的膜开发的“电缆方程”的修改,建立具有活性离子通道的神经元的数学模型。然后,将对模拟结果和拟合的数学模型进行分析,以便评估空间夹误差的性质和大小,并制定识别和纠正这些误差的标准。这个POWRE项目将使Castelfranco博士在经历了几年的非自愿中断后,能够重返与她的训练和科学兴趣一致的数学神经生理学研究计划。此外,这将把她在母校的正式身份转变为一种可以增加她获得资源的机会,并提高她研究的知名度。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ann Castelfranco其他文献

A computational study of factors in the evolution of myelin
  • DOI:
    10.1186/1471-2202-8-s2-p115
  • 发表时间:
    2007-07-06
  • 期刊:
  • 影响因子:
    2.300
  • 作者:
    Ann Castelfranco;Daniel Hartline
  • 通讯作者:
    Daniel Hartline

Ann Castelfranco的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
  • 批准号:
    41601604
  • 批准年份:
    2016
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
  • 批准号:
    31100958
  • 批准年份:
    2011
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
  • 批准号:
    30470153
  • 批准年份:
    2004
  • 资助金额:
    22.0 万元
  • 项目类别:
    面上项目

相似海外基金

Design and Analysis of Holographic Optical Reconfigurable Intelligent Surface for Free-Space Optical Communications
自由空间光通信全息光学可重构智能表面设计与分析
  • 批准号:
    24K17272
  • 财政年份:
    2024
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Ergodic theory and multifractal analysis for non-uniformly hyperbolic dynamical systems with a non-compact state space
非紧状态空间非均匀双曲动力系统的遍历理论和多重分形分析
  • 批准号:
    24K06777
  • 财政年份:
    2024
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
I-Corps: Vision analysis system using inferred three-dimensional data to analyze and correct a user’s pose in relation to 3D space
I-Corps:视觉分析系统,使用推断的三维数据来分析和纠正用户相对于 3D 空间的姿势
  • 批准号:
    2403992
  • 财政年份:
    2024
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant
CAREER: Guided Exploration of Multiphysics Design Space for Electric Machines Using Tensorial Analysis (GEOMETRY)
职业:使用张量分析(几何)引导探索电机的多物理场设计空间
  • 批准号:
    2338541
  • 财政年份:
    2024
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Continuing Grant
NSF-BSF: Computational Methods for Shape Space Analysis in Structural Biology
NSF-BSF:结构生物学中形状空间分析的计算方法
  • 批准号:
    2309782
  • 财政年份:
    2023
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Continuing Grant
Analysis of Skills, Training, Research, And Innovation Opportunities in Space (ASTRAIOS)
太空技能、培训、研究和创新机会分析 (ASTRAIOS)
  • 批准号:
    10061089
  • 财政年份:
    2023
  • 资助金额:
    $ 7.5万
  • 项目类别:
    EU-Funded
Analysis of Skills, Training, Research, And Innovation Opportunities in Space
太空技能、培训、研究和创新机会分析
  • 批准号:
    10056510
  • 财政年份:
    2023
  • 资助金额:
    $ 7.5万
  • 项目类别:
    EU-Funded
Towards Harmonic Analysis in Wasserstein Space: Low-Dimensional Structures, Learning, and Algorithms
Wasserstein 空间中的调和分析:低维结构、学习和算法
  • 批准号:
    2309519
  • 财政年份:
    2023
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Continuing Grant
In-situ Measurement Techniques for Space and Planetary Plasmas Challenged by State-of-the-art Analysis Principle and Innovative Signal Processing
空间和行星等离子体的原位测量技术受到最先进分析原理和创新信号处理的挑战
  • 批准号:
    23K17701
  • 财政年份:
    2023
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
High-Order Adaptive Space-Time Flow Analysis
高阶自适应时空流分析
  • 批准号:
    RGPIN-2016-06403
  • 财政年份:
    2022
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了