Geometry and Topology of Symplectic Four Manifolds

辛四流形的几何与拓扑

基本信息

  • 批准号:
    9975469
  • 负责人:
  • 金额:
    $ 9.4万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1999
  • 资助国家:
    美国
  • 起止时间:
    1999-07-15 至 2002-06-30
  • 项目状态:
    已结题

项目摘要

Proposal: DMS-9975469PI: Tian-Jun LiAbstract: The focus of this project is to apply methods from differential topology,geometric analysis and algebraic geometry to study symplectic four manifolds.For symplectic four manifolds, the equivalence between Seiberg-Witten invariants and the symplectic Gromov-Taubes invariants has led to many striking results in symplectic topology. In collaboration with Liu, Li has set up the parametrized Seiberg-Witten theory and derived a wall-crossing formula.The parametrized Seiberg-Witten theory is particularly interesting forfamilies of symplectic manifolds. Li proposes to develop further the parametrized Seiberg-Witten and the parametrized Gromov-Taubes theories and show that these two theories are equivalent for symplectic families.The parametrized theories should be useful for studying the isotopies of diffeomorphismsas well as symplectomorphisms. And the equivalence between the two theories is expected to play an important role in the classification of symplectic four manifolds, especially those with torsion canonical classes. Recently, it has been shown that smooth Lefschetz fibrationsprovide a link between the topology of symplectic four manifolds,the geometry of the moduli space of curves and the algebra ofthe mapping class groups. The investigator plans to explore thebeautiful and rich interplay to advance understandingof all these objects.An n manifold is a space that locally looks like Euclidean spaceof dimension n. For example, the space-time universe we live inis a four manifold. A symplectic structure is a very basic structure that underliesalmost all the equations of classical and quantum physics. A symplectic four manifold is a four manifold witha symplectic structure. Thus symplectic four manifoldsplay a central role in mathematics and physics.The fundamental problem is to classify all symplecticfour manifolds. The investigator aims to gain some understanding of the general shapeof symplectic four manifolds.
建议:DMS-9975469PI:Lian-jun Lian-jun摘要:本项目的重点是应用微分拓扑学、几何分析和代数几何的方法研究辛四流形。对于辛四流形,Seiberg-Witten不变量与辛Gromov-Taube不变量的等价性在辛拓扑中得到了许多令人惊叹的结果。在与刘的合作下,Li建立了参数化的Seiberg-Witten理论,并推导出了一个跨越墙的公式。李建议进一步发展参数化的Seiberg-Witten理论和参数化的Gromov-Taubes理论,并证明这两个理论对于辛族是等价的。参数化理论对于研究微分同构和辛同构都是有用的。这两个理论之间的等价性有望在辛四流形的分类中发挥重要作用,特别是那些具有扭转正则类的流形。最近,光滑Lefschetz纤维被证明是四个辛流形的拓扑、曲线模空间的几何和映射类群的代数之间的纽带。研究人员计划探索美丽而丰富的相互作用,以促进对所有这些对象的理解。流形是一个局部看起来像n维欧几里得空间的空间。例如,我们生活的时空宇宙是一个四维流形。辛结构是一种非常基本的结构,它几乎涵盖了经典物理和量子物理中的所有方程。辛四流形是具有辛结构的四流形。因此,辛四流形在数学和物理中起着核心作用。基本问题是对所有的辛四流形进行分类。作者的目的是对辛四流形的一般形式有一些了解。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tian-Jun Li其他文献

有理ホモロジー3球面の Seiberg-Witten-Floer 安定ホモトピー型
有理同调 3 球体的 Seiberg-Witten-Floer 稳定同伦型
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tian-Jun Li;Cheuk Yu Mak and Kouichi Yasui;Mitsunobu TSUTAYA;Shouhei Honda;笹平 裕史;井上 歩;Mitsunobu TSUTAYA;小鳥居祐香;笹平 裕史
  • 通讯作者:
    笹平 裕史
Oscillator strengths and cross sectionsof the valence-shell excitations of CH3I studied by fast electron scattering
Symplectic Parshin-Arakelov Inequality
Kodaira Dimension in Low Dimensional Topology
SYMPLECTIC 4-MANIFOLDS WITH KODAIRA DIMENSION ZERO

Tian-Jun Li的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tian-Jun Li', 18)}}的其他基金

Topology of Symplectic 4-Manifolds
辛4流形拓扑
  • 批准号:
    1611680
  • 财政年份:
    2016
  • 资助金额:
    $ 9.4万
  • 项目类别:
    Standard Grant
Topology and Geometry of Symplectic Four Manifolds
辛四流形的拓扑与几何
  • 批准号:
    1207037
  • 财政年份:
    2012
  • 资助金额:
    $ 9.4万
  • 项目类别:
    Standard Grant
FRG:Collaborative Research: The topology and invariants of smooth 4-manifolds
FRG:协作研究:光滑4流形的拓扑和不变量
  • 批准号:
    1065927
  • 财政年份:
    2011
  • 资助金额:
    $ 9.4万
  • 项目类别:
    Standard Grant
Symplectic Structures on Closed Manifolds
闭流形上的辛结构
  • 批准号:
    0604748
  • 财政年份:
    2006
  • 资助金额:
    $ 9.4万
  • 项目类别:
    Standard Grant
Geometry and Topology of Symplectic Four Manifolds
辛四流形的几何与拓扑
  • 批准号:
    0435099
  • 财政年份:
    2004
  • 资助金额:
    $ 9.4万
  • 项目类别:
    Continuing Grant
Geometry and Topology of Symplectic Four Manifolds
辛四流形的几何与拓扑
  • 批准号:
    0207488
  • 财政年份:
    2002
  • 资助金额:
    $ 9.4万
  • 项目类别:
    Continuing Grant
Geometry and Topology of Symplectic Four Manifolds
辛四流形的几何与拓扑
  • 批准号:
    0096155
  • 财政年份:
    1999
  • 资助金额:
    $ 9.4万
  • 项目类别:
    Standard Grant

相似海外基金

Symplectic topology and equivariant geometry
辛拓扑和等变几何
  • 批准号:
    RGPIN-2020-06428
  • 财政年份:
    2022
  • 资助金额:
    $ 9.4万
  • 项目类别:
    Discovery Grants Program - Individual
Symplectic topology, generalized geometry and their applications
辛拓扑、广义几何及其应用
  • 批准号:
    RGPIN-2019-05899
  • 财政年份:
    2022
  • 资助金额:
    $ 9.4万
  • 项目类别:
    Discovery Grants Program - Individual
Symplectic topology and equivariant geometry
辛拓扑和等变几何
  • 批准号:
    RGPIN-2020-06428
  • 财政年份:
    2021
  • 资助金额:
    $ 9.4万
  • 项目类别:
    Discovery Grants Program - Individual
Geometry and Topology of Holomorphic Symplectic Varieties
全纯辛簇的几何和拓扑
  • 批准号:
    2134315
  • 财政年份:
    2021
  • 资助金额:
    $ 9.4万
  • 项目类别:
    Standard Grant
Symplectic topology, generalized geometry and their applications
辛拓扑、广义几何及其应用
  • 批准号:
    RGPIN-2019-05899
  • 财政年份:
    2021
  • 资助金额:
    $ 9.4万
  • 项目类别:
    Discovery Grants Program - Individual
Equivariant topology and symplectic geometry
等变拓扑和辛几何
  • 批准号:
    RGPIN-2015-05382
  • 财政年份:
    2021
  • 资助金额:
    $ 9.4万
  • 项目类别:
    Discovery Grants Program - Individual
Symplectic topology and equivariant geometry
辛拓扑和等变几何
  • 批准号:
    RGPIN-2020-06428
  • 财政年份:
    2020
  • 资助金额:
    $ 9.4万
  • 项目类别:
    Discovery Grants Program - Individual
Symplectic topology, generalized geometry and their applications
辛拓扑、广义几何及其应用
  • 批准号:
    RGPIN-2019-05899
  • 财政年份:
    2020
  • 资助金额:
    $ 9.4万
  • 项目类别:
    Discovery Grants Program - Individual
Geometry and Topology of Holomorphic Symplectic Varieties
全纯辛簇的几何和拓扑
  • 批准号:
    2000726
  • 财政年份:
    2020
  • 资助金额:
    $ 9.4万
  • 项目类别:
    Standard Grant
Equivariant topology and symplectic geometry
等变拓扑和辛几何
  • 批准号:
    RGPIN-2015-05382
  • 财政年份:
    2020
  • 资助金额:
    $ 9.4万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了