Topology of Symplectic 4-Manifolds

辛4流形拓扑

基本信息

  • 批准号:
    1611680
  • 负责人:
  • 金额:
    $ 26.7万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-07-01 至 2022-06-30
  • 项目状态:
    已结题

项目摘要

This research project investigates the properties of symplectic manifolds. Symplectic structures arise naturally in classical mechanics, the branch of physics that describes the motion of macroscopic objects, and these mathematical structures underlie the fundamental equations of classical and quantum physics. The project aims to gain new understanding of the general shape of symplectic four-manifolds using a variety of techniques from various branches of mathematics, such as topology, algebraic geometry, and differential geometry.The research concerns several aspects of four-dimensional topology and geometry. Some of the projects on closed four-manifolds are: defining smooth and symplectic invariants and studying their properties; classifying symplectic Calabi-Yau four-manifolds and classifying configurations of Lagrangian and symplectic surfaces in rational and ruled manifolds; and investigating smooth and symplectic mapping class groups and finite symmetries. For four-manifolds with boundary, the project investigates special symplectic caps, including unruled caps and Calabi-Yau caps, with an eye towards understanding various types of symplectic fillings. A new aspect of the work is investigation of concave symplectic four-manifolds as structures of independent interest; in particular, the project aims to show that concave symplectic four-manifolds share many properties with closed symplectic four-manifolds.
本研究计画探讨辛流形的性质。 辛结构自然出现在经典力学中,经典力学是描述宏观物体运动的物理学分支,这些数学结构是经典和量子物理学基本方程的基础。 该项目旨在利用拓扑学、代数几何学和微分几何学等数学分支的各种技术,对辛四维流形的一般形状有新的认识。研究涉及四维拓扑学和几何学的几个方面。闭四维流形上的一些项目是:定义光滑和辛不变量并研究它们的性质;对辛卡-丘四维流形进行分类,并对有理和规则流形中拉格朗日和辛曲面的配置进行分类;以及研究光滑和辛映射类群和有限对称。对于有边界的四流形,该项目研究了特殊的辛帽,包括无规则帽和卡-丘帽,着眼于理解各种类型的辛填充。一个新的方面的工作是调查凹辛四流形作为结构的独立利益;特别是,该项目的目的是表明,凹辛四流形共享许多性质与封闭辛四流形。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tian-Jun Li其他文献

有理ホモロジー3球面の Seiberg-Witten-Floer 安定ホモトピー型
有理同调 3 球体的 Seiberg-Witten-Floer 稳定同伦型
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tian-Jun Li;Cheuk Yu Mak and Kouichi Yasui;Mitsunobu TSUTAYA;Shouhei Honda;笹平 裕史;井上 歩;Mitsunobu TSUTAYA;小鳥居祐香;笹平 裕史
  • 通讯作者:
    笹平 裕史
Oscillator strengths and cross sectionsof the valence-shell excitations of CH3I studied by fast electron scattering
Symplectic Parshin-Arakelov Inequality
Kodaira Dimension in Low Dimensional Topology
SYMPLECTIC 4-MANIFOLDS WITH KODAIRA DIMENSION ZERO

Tian-Jun Li的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tian-Jun Li', 18)}}的其他基金

Topology and Geometry of Symplectic Four Manifolds
辛四流形的拓扑与几何
  • 批准号:
    1207037
  • 财政年份:
    2012
  • 资助金额:
    $ 26.7万
  • 项目类别:
    Standard Grant
FRG:Collaborative Research: The topology and invariants of smooth 4-manifolds
FRG:协作研究:光滑4流形的拓扑和不变量
  • 批准号:
    1065927
  • 财政年份:
    2011
  • 资助金额:
    $ 26.7万
  • 项目类别:
    Standard Grant
Symplectic Structures on Closed Manifolds
闭流形上的辛结构
  • 批准号:
    0604748
  • 财政年份:
    2006
  • 资助金额:
    $ 26.7万
  • 项目类别:
    Standard Grant
Geometry and Topology of Symplectic Four Manifolds
辛四流形的几何与拓扑
  • 批准号:
    0435099
  • 财政年份:
    2004
  • 资助金额:
    $ 26.7万
  • 项目类别:
    Continuing Grant
Geometry and Topology of Symplectic Four Manifolds
辛四流形的几何与拓扑
  • 批准号:
    0207488
  • 财政年份:
    2002
  • 资助金额:
    $ 26.7万
  • 项目类别:
    Continuing Grant
Geometry and Topology of Symplectic Four Manifolds
辛四流形的几何与拓扑
  • 批准号:
    9975469
  • 财政年份:
    1999
  • 资助金额:
    $ 26.7万
  • 项目类别:
    Standard Grant
Geometry and Topology of Symplectic Four Manifolds
辛四流形的几何与拓扑
  • 批准号:
    0096155
  • 财政年份:
    1999
  • 资助金额:
    $ 26.7万
  • 项目类别:
    Standard Grant

相似海外基金

Symplectic Topology of Weinstein Manifolds and Related Topics
温斯坦流形的辛拓扑及相关主题
  • 批准号:
    1807270
  • 财政年份:
    2018
  • 资助金额:
    $ 26.7万
  • 项目类别:
    Continuing Grant
Dehn Surgery, Four-Manifolds, and Symplectic Topology
Dehn 手术、四流形和辛拓扑
  • 批准号:
    1709702
  • 财政年份:
    2017
  • 资助金额:
    $ 26.7万
  • 项目类别:
    Standard Grant
Symplectic geometry and contact topology for manifolds with boundary and its applications
有边界流形的辛几何与接触拓扑及其应用
  • 批准号:
    17F17318
  • 财政年份:
    2017
  • 资助金额:
    $ 26.7万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Topology and Contact and Symplectic Manifolds
拓扑、接触流形和辛流形
  • 批准号:
    1612412
  • 财政年份:
    2016
  • 资助金额:
    $ 26.7万
  • 项目类别:
    Standard Grant
Topology of smooth and symplectic 4-manifolds
光滑和辛4流形的拓扑
  • 批准号:
    1510395
  • 财政年份:
    2015
  • 资助金额:
    $ 26.7万
  • 项目类别:
    Standard Grant
Topology and Geometry of Symplectic Four Manifolds
辛四流形的拓扑与几何
  • 批准号:
    1207037
  • 财政年份:
    2012
  • 资助金额:
    $ 26.7万
  • 项目类别:
    Standard Grant
Topology of symplectic four-manifolds
辛四流形拓扑
  • 批准号:
    261491-2007
  • 财政年份:
    2011
  • 资助金额:
    $ 26.7万
  • 项目类别:
    Discovery Grants Program - Individual
Topology of symplectic four-manifolds
辛四流形拓扑
  • 批准号:
    261491-2007
  • 财政年份:
    2010
  • 资助金额:
    $ 26.7万
  • 项目类别:
    Discovery Grants Program - Individual
Topology of symplectic four-manifolds
辛四流形拓扑
  • 批准号:
    261491-2007
  • 财政年份:
    2009
  • 资助金额:
    $ 26.7万
  • 项目类别:
    Discovery Grants Program - Individual
Knots and surfaces in three- and four-manifolds: Applications of symplectic topology and quantum algebra to low dimensional topology
三流形和四流形中的结和表面:辛拓扑和量子代数在低维拓扑中的应用
  • 批准号:
    0906258
  • 财政年份:
    2009
  • 资助金额:
    $ 26.7万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了