CAREER: Runtime Recommender Systems for Compositional Modeling of Scientific Computations

职业:用于科学计算组合建模的运行时推荐系统

基本信息

项目摘要

ABSTRACTEIA 9984317Naren RamakrishnanVirginia Polytechnic Institute & State UniversityCAREER: Runtime Recommender Systems for Compositional Modeling of Scientific ComputationsThe central goal of this career development proposal is to introduce runtime recommendation, an abstraction that extends the above two ideas significantly. Specifically, it monitors a computational process, detects state-changes, and makes selections of solution components dynamically, thus aiding knowledge-based application composition at runtime. Such a facility is important in many problem domains because: (i) the nature of the problem being solved changes as the computations are being performed, (ii) the underlying computing platform or resource availability is dynamic, or (iii) information about application performance characteristics is acquired during the actual computation rather than before. While traditional recommenders are designed off-line (by organizing a battery of benchmark problems and algorithm executions, and subsequently mining it to obtain high-level recommendation rules), the design of a runtime recommender system is difficult, because such a database is not readily available and needs to be "captured" on the fly. Thus, a runtime recommender interacts dynamically with its environment and learns through interactions with its environment.
摘要9984317Naren Ramakrishnan弗吉尼亚理工学院&州立大学这个职业发展建议的中心目标是引入运行时推荐,这是一个显著扩展上述两个想法的抽象。 具体来说,它监视计算过程,检测状态变化,并动态地选择解决方案组件,从而在运行时帮助基于知识的应用程序组合。 这样的设施在许多问题领域中是重要的,因为:(i)被解决的问题的性质随着计算的执行而改变,(ii)底层计算平台或资源可用性是动态的,或者(iii)关于应用性能特性的信息是在实际计算期间而不是之前获取的。 虽然传统的推荐系统是离线设计的(通过组织一组基准问题和算法执行,并随后对其进行挖掘以获得高级推荐规则),但运行时推荐系统的设计是困难的,因为这样的数据库并不容易获得,并且需要在运行中“捕获”。 因此,运行时推荐器动态地与其环境交互,并通过与其环境的交互来学习。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Naren Ramakrishnan其他文献

Protein Design by Sampling an Undirected Graphical Model of Residue Constraints
通过对残基约束的无向图形模型进行采样进行蛋白质设计
Reconstructing chemical reaction networks: data mining meets system identification
重构化学反应网络:数据挖掘遇上系统识别
  • DOI:
    10.1145/1401890.1401912
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Y. Cho;Naren Ramakrishnan;Yang Cao
  • 通讯作者:
    Yang Cao
Forecasting Rare Disease Outbreaks with Spatio-temporal Topic Models
使用时空主题模型预测罕见疾病爆发
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Saurav Ghosh;Theodoros Rekatsinas;S. Mekaru;E. Nsoesie;J. Brownstein;L. Getoor;Naren Ramakrishnan
  • 通讯作者:
    Naren Ramakrishnan
(Hyper) local news aggregation: designing for social affordances
(超级)本地新闻聚合:针对社会可供性进行设计
  • DOI:
    10.1145/2307729.2307736
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Andrea L. Kavanaugh;Ankit Ahuja;S. Gad;S. Neidig;Manuel A. Pérez;Naren Ramakrishnan;J. Tedesco
  • 通讯作者:
    J. Tedesco
A Nonparametric Approach to Uncovering Connected Anomalies by Tree Shaped Priors
通过树形先验发现关联异常的非参数方法

Naren Ramakrishnan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Naren Ramakrishnan', 18)}}的其他基金

D-ISN/Collaborative Research: Machine Learning to Improve Detection and Traceability of Forest Products using Stable Isotope Ratio Analysis (SIRA)
D-ISN/合作研究:利用稳定同位素比率分析 (SIRA) 提高林产品检测和可追溯性的机器学习
  • 批准号:
    2240402
  • 财政年份:
    2023
  • 资助金额:
    $ 22.98万
  • 项目类别:
    Standard Grant
Expeditions: Collaborative Research: Global Pervasive Computational Epidemiology
探险:合作研究:全球普适计算流行病学
  • 批准号:
    1918770
  • 财政年份:
    2020
  • 资助金额:
    $ 22.98万
  • 项目类别:
    Continuing Grant
NRT-DESE: UrbComp: Data Science for Modeling, Understanding, and Advancing Urban Populations
NRT-DESE:UrbComp:用于建模、理解和促进城市人口发展的数据科学
  • 批准号:
    1545362
  • 财政年份:
    2015
  • 资助金额:
    $ 22.98万
  • 项目类别:
    Standard Grant
Formal Models, Algorithms, and Visualizations for Storytelling Analytics
用于讲故事分析的形式模型、算法和可视化
  • 批准号:
    0937133
  • 财政年份:
    2009
  • 资助金额:
    $ 22.98万
  • 项目类别:
    Standard Grant
III: Medium: Collaborative Research: Integration, Prediction, and Generation of Mixed Mode Information using Graphical Models, with Applications to Protein-Protein Interactions
III:媒介:协作研究:使用图形模型整合、预测和生成混合模式信息,并应用于蛋白质-蛋白质相互作用
  • 批准号:
    0905313
  • 财政年份:
    2009
  • 资助金额:
    $ 22.98万
  • 项目类别:
    Standard Grant
CSR-AES: The Adaptive Code Kitchen: Flexible Approaches to Dynamic Application Composition
CSR-AES:自适应代码厨房:动态应用程序组合的灵活方法
  • 批准号:
    0615181
  • 财政年份:
    2006
  • 资助金额:
    $ 22.98万
  • 项目类别:
    Continuing Grant
SGER: Personalization by Partial Evaluation
SGER:通过部分评估实现个性化
  • 批准号:
    0136182
  • 财政年份:
    2002
  • 资助金额:
    $ 22.98万
  • 项目类别:
    Standard Grant
NGS: A Microarray Experiment Management System
NGS:微阵列实验管理系统
  • 批准号:
    0103660
  • 财政年份:
    2001
  • 资助金额:
    $ 22.98万
  • 项目类别:
    Continuing Grant

相似海外基金

CAREER: Compiler and Runtime Support for Sampled Sparse Computations on Heterogeneous Systems
职业:异构系统上采样稀疏计算的编译器和运行时支持
  • 批准号:
    2338144
  • 财政年份:
    2024
  • 资助金额:
    $ 22.98万
  • 项目类别:
    Continuing Grant
CNS Core: Small: Ensuring Privacy by Runtime Analog Sanitization of Solid State Storage Devices
CNS 核心:小型:通过固态存储设备的运行时模拟清理确保隐私
  • 批准号:
    2403540
  • 财政年份:
    2023
  • 资助金额:
    $ 22.98万
  • 项目类别:
    Standard Grant
FMitF: Track I: Synthesizing Semantic Checkers for Runtime Verification of Production Distributed Systems
FMITF:第一轨:综合语义检查器以进行生产分布式系统的运行时验证
  • 批准号:
    2318937
  • 财政年份:
    2023
  • 资助金额:
    $ 22.98万
  • 项目类别:
    Standard Grant
Collaborative Research: FMitF: Track II: Cross-Language Support for Runtime Verification
合作研究:FMitF:轨道 II:运行时验证的跨语言支持
  • 批准号:
    2319473
  • 财政年份:
    2023
  • 资助金额:
    $ 22.98万
  • 项目类别:
    Standard Grant
ACED Fab: Runtime Reconfigurable Array (RTRA) Technology for AI/ML
ACED Fab:适用于 AI/ML 的运行时可重构阵列 (RTRA) 技术
  • 批准号:
    2315295
  • 财政年份:
    2023
  • 资助金额:
    $ 22.98万
  • 项目类别:
    Standard Grant
Innovative software for the mining industry that automatically designs optimally shaped slopes in any lithology within a suitably short runtime
适用于采矿业的创新软件,可在适当短的运行时间内自动设计任何岩性的最佳形状斜坡
  • 批准号:
    10078412
  • 财政年份:
    2023
  • 资助金额:
    $ 22.98万
  • 项目类别:
    Collaborative R&D
CAREER: An Automated Compiler-Runtime Framework for Democratizing Secure Collaborative Computation
职业:用于民主化安全协作计算的自动编译器运行时框架
  • 批准号:
    2238671
  • 财政年份:
    2023
  • 资助金额:
    $ 22.98万
  • 项目类别:
    Continuing Grant
Collaborative Research: FMitF: Track II: Cross-Language Support for Runtime Verification
合作研究:FMitF:轨道 II:运行时验证的跨语言支持
  • 批准号:
    2319472
  • 财政年份:
    2023
  • 资助金额:
    $ 22.98万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Scalable and Extensible I/O Runtime and Tools for Next Generation Adaptive Data Layouts
协作研究:SHF:小型:可扩展和可扩展的 I/O 运行时以及下一代自适应数据布局的工具
  • 批准号:
    2401274
  • 财政年份:
    2023
  • 资助金额:
    $ 22.98万
  • 项目类别:
    Standard Grant
SHF: Small: Expediting the Execution of Machine Learning Applications on Multi-GPU Infrastructure with Architecture Awareness and Runtime Support
SHF:小型:通过架构意识和运行时支持加快多 GPU 基础设施上机器学习应用程序的执行
  • 批准号:
    2154973
  • 财政年份:
    2022
  • 资助金额:
    $ 22.98万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了