Formal Models, Algorithms, and Visualizations for Storytelling Analytics
用于讲故事分析的形式模型、算法和可视化
基本信息
- 批准号:0937133
- 负责人:
- 金额:$ 49.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-15 至 2014-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Modern direct manipulation and visualization systems have made key strides in bringing powerful data transformations and algorithms to the analyst's desktop. But to further promote the vision of powerful visual analytics, wherein automated algorithms and visual representations complement each other to yield new insight, we must continually increase the expressiveness with which analysts interact with data. This project focuses on the task of storytelling, that is to say the stringing together of seemingly unconnected pieces of data into a coherent thread or argument. To support storytelling, which requires both human judgment and algorithmic assistance, the PIs will first develop a new theory of relational redescriptions that provides a uniform way to describe data and to compose data transformation algorithms across a multitude of domains. Using this theory, the PIs will be able to define stories formally as compositions of relational redescriptions. They will develop scalable and steerable algorithms for storytelling that will respond to dynamic user input, such as preferences and constraints, and they will contextualize their use in interactive visualizations that harness the power of spatial layout. Finally, they will investigate how analysts engage in sense-making using the new storytelling algorithms and visualizations, in the hope of finding answers to questions such as: How do analysts achieve insight and advance their conceptualization of patterns derived from datasets? Project outcomes will include the formal conceptualization of storytelling as well as the compositional approach to building complex chains of inference.Broader Impacts: This research will make it easier for analysts to interactively explore connections in large-scale heterogeneous datasets. The PIs will work with the FODAVA-lead team at Georgia Tech and PNNL's NVAC to investigate applications of relational redescriptions and storytelling to domains of interest to NSF and DHS, and will develop in consultation with real users across these groups a layered software framework for storytelling (both analysis and visualization) capabilities; the framework will be released into the public domain under the GNU GPL/Lesser GNU GPL license, and APIs will be provided that allow analysts to tailor it to suit their needs. Although this project will focus on cyber-analytics scenarios such as those motivated by the VAST 2009 challenge, project outcomes will generalize across other domains such as bioinformatics, systems biology, electronic commerce, and social networks. The unified notion of redescriptions will help integrate multiple data sources (numeric, symbolic, textual, and categorical), and situate them on a common footing for visual analytics; it will also enable visual analysts from different application domains to use a common vocabulary while interacting with one other.
现代直接操作和可视化系统在将强大的数据转换和算法带到分析师桌面方面取得了关键进展。 但是,为了进一步推动强大的可视化分析的愿景,即自动化算法和可视化表示相互补充以产生新的洞察力,我们必须不断提高分析师与数据交互的表现力。 这个项目的重点是讲故事的任务,也就是说,将看似无关的数据片段串在一起,形成一个连贯的线索或论点。 为了支持讲故事,这需要人类的判断和算法的帮助,PI将首先开发一种新的关系重新描述理论,提供一种统一的方法来描述数据,并在多个领域组成数据转换算法。 利用这一理论,PI将能够将故事正式定义为关系重新描述的组合。 他们将开发可扩展和可操纵的讲故事算法,这些算法将响应动态用户输入,例如偏好和约束,并且他们将在利用空间布局的力量的交互式可视化中使用它们。 最后,他们将研究分析师如何使用新的讲故事算法和可视化进行意义构建,希望找到问题的答案,例如:分析师如何实现洞察力并推进他们对数据集衍生模式的概念化? 项目成果将包括正式的概念化的讲故事,以及组成的方法来构建复杂的推理链。更广泛的影响:这项研究将使分析师更容易交互式地探索大规模异构数据集的连接。 PI将与格鲁吉亚理工学院的FODAVA领导团队和PNNL的NVAC合作,调查关系重新描述和讲故事在NSF和DHS感兴趣的领域的应用,并将与这些群体的真实的用户协商开发用于讲故事的分层软件框架(分析和可视化)能力;该框架将在GNU GPL/Lesser GNU GPL许可证下发布到公共领域,并将提供API,允许分析人员对其进行调整以满足他们的需求。 虽然这个项目将集中在网络分析方案,如那些由VAST 2009年的挑战,项目成果将推广到其他领域,如生物信息学,系统生物学,电子商务和社交网络。 重新描述的统一概念将有助于集成多个数据源(数字,符号,文本和分类),并将它们置于可视化分析的共同基础上;它还将使来自不同应用领域的可视化分析师在相互交互时使用通用词汇表。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Naren Ramakrishnan其他文献
Protein Design by Sampling an Undirected Graphical Model of Residue Constraints
通过对残基约束的无向图形模型进行采样进行蛋白质设计
- DOI:
10.1109/tcbb.2008.124 - 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
John Thomas;Naren Ramakrishnan;C. Bailey - 通讯作者:
C. Bailey
Reconstructing chemical reaction networks: data mining meets system identification
重构化学反应网络:数据挖掘遇上系统识别
- DOI:
10.1145/1401890.1401912 - 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Y. Cho;Naren Ramakrishnan;Yang Cao - 通讯作者:
Yang Cao
Forecasting Rare Disease Outbreaks with Spatio-temporal Topic Models
使用时空主题模型预测罕见疾病爆发
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Saurav Ghosh;Theodoros Rekatsinas;S. Mekaru;E. Nsoesie;J. Brownstein;L. Getoor;Naren Ramakrishnan - 通讯作者:
Naren Ramakrishnan
(Hyper) local news aggregation: designing for social affordances
(超级)本地新闻聚合:针对社会可供性进行设计
- DOI:
10.1145/2307729.2307736 - 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Andrea L. Kavanaugh;Ankit Ahuja;S. Gad;S. Neidig;Manuel A. Pérez;Naren Ramakrishnan;J. Tedesco - 通讯作者:
J. Tedesco
A Nonparametric Approach to Uncovering Connected Anomalies by Tree Shaped Priors
通过树形先验发现关联异常的非参数方法
- DOI:
10.1109/tkde.2018.2868097 - 发表时间:
2019-10 - 期刊:
- 影响因子:0
- 作者:
Nannan Wu;Feng Chen;Jianxin Li;Jin-Peng Huai;Baojian Zhou;Bo Li;Naren Ramakrishnan - 通讯作者:
Naren Ramakrishnan
Naren Ramakrishnan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Naren Ramakrishnan', 18)}}的其他基金
D-ISN/Collaborative Research: Machine Learning to Improve Detection and Traceability of Forest Products using Stable Isotope Ratio Analysis (SIRA)
D-ISN/合作研究:利用稳定同位素比率分析 (SIRA) 提高林产品检测和可追溯性的机器学习
- 批准号:
2240402 - 财政年份:2023
- 资助金额:
$ 49.48万 - 项目类别:
Standard Grant
Expeditions: Collaborative Research: Global Pervasive Computational Epidemiology
探险:合作研究:全球普适计算流行病学
- 批准号:
1918770 - 财政年份:2020
- 资助金额:
$ 49.48万 - 项目类别:
Continuing Grant
NRT-DESE: UrbComp: Data Science for Modeling, Understanding, and Advancing Urban Populations
NRT-DESE:UrbComp:用于建模、理解和促进城市人口发展的数据科学
- 批准号:
1545362 - 财政年份:2015
- 资助金额:
$ 49.48万 - 项目类别:
Standard Grant
III: Medium: Collaborative Research: Integration, Prediction, and Generation of Mixed Mode Information using Graphical Models, with Applications to Protein-Protein Interactions
III:媒介:协作研究:使用图形模型整合、预测和生成混合模式信息,并应用于蛋白质-蛋白质相互作用
- 批准号:
0905313 - 财政年份:2009
- 资助金额:
$ 49.48万 - 项目类别:
Standard Grant
CSR-AES: The Adaptive Code Kitchen: Flexible Approaches to Dynamic Application Composition
CSR-AES:自适应代码厨房:动态应用程序组合的灵活方法
- 批准号:
0615181 - 财政年份:2006
- 资助金额:
$ 49.48万 - 项目类别:
Continuing Grant
SGER: Personalization by Partial Evaluation
SGER:通过部分评估实现个性化
- 批准号:
0136182 - 财政年份:2002
- 资助金额:
$ 49.48万 - 项目类别:
Standard Grant
NGS: A Microarray Experiment Management System
NGS:微阵列实验管理系统
- 批准号:
0103660 - 财政年份:2001
- 资助金额:
$ 49.48万 - 项目类别:
Continuing Grant
CAREER: Runtime Recommender Systems for Compositional Modeling of Scientific Computations
职业:用于科学计算组合建模的运行时推荐系统
- 批准号:
9984317 - 财政年份:2000
- 资助金额:
$ 49.48万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
新型手性NAD(P)H Models合成及生化模拟
- 批准号:20472090
- 批准年份:2004
- 资助金额:23.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Theory and Algorithms for Learning with Frozen Pretrained Models
职业:使用冻结的预训练模型进行学习的理论和算法
- 批准号:
2339978 - 财政年份:2024
- 资助金额:
$ 49.48万 - 项目类别:
Continuing Grant
CAREER: Scalable algorithms for regularized and non-linear genetic models of gene expression
职业:基因表达的正则化和非线性遗传模型的可扩展算法
- 批准号:
2336469 - 财政年份:2024
- 资助金额:
$ 49.48万 - 项目类别:
Continuing Grant
XTRIPODS: Algorithms and Machine Learning in Data Intensive Models
XTRIPODS:数据密集型模型中的算法和机器学习
- 批准号:
2342527 - 财政年份:2024
- 资助金额:
$ 49.48万 - 项目类别:
Standard Grant
I-Corps: Using neural radiance fields (NeRF) and photogrammetry algorithms for creating 3D models
I-Corps:使用神经辐射场 (NeRF) 和摄影测量算法创建 3D 模型
- 批准号:
2412147 - 财政年份:2024
- 资助金额:
$ 49.48万 - 项目类别:
Standard Grant
Integrated Framework for Cooperative 3D Printing: Uncertainty Quantification, Decision Models, and Algorithms
协作 3D 打印的集成框架:不确定性量化、决策模型和算法
- 批准号:
2329739 - 财政年份:2024
- 资助金额:
$ 49.48万 - 项目类别:
Standard Grant
AI innovation in the supply chain of consumer packaged-goods for recognising objects in retail execution, supply chain management and smart factories: using novel diffusion-based optimisation algorithms and diffusion-based generative models
消费包装商品供应链中的人工智能创新,用于识别零售执行、供应链管理和智能工厂中的对象:使用新颖的基于扩散的优化算法和基于扩散的生成模型
- 批准号:
10081810 - 财政年份:2023
- 资助金额:
$ 49.48万 - 项目类别:
Collaborative R&D
CAREER: Interpretable and Robust Machine Learning Models: Analysis and Algorithms
职业:可解释且稳健的机器学习模型:分析和算法
- 批准号:
2239787 - 财政年份:2023
- 资助金额:
$ 49.48万 - 项目类别:
Continuing Grant
CAREER: Deep Neural Networks That Can See Shape From Images: Models, Algorithms, and Applications
职业:可以从图像中看到形状的深度神经网络:模型、算法和应用
- 批准号:
2239977 - 财政年份:2023
- 资助金额:
$ 49.48万 - 项目类别:
Continuing Grant
Collaborative Research: FET: Small: De Novo Protein Scaffold Filling by Combinatorial Algorithms and Deep Learning Models
合作研究:FET:小型:通过组合算法和深度学习模型从头填充蛋白质支架
- 批准号:
2307573 - 财政年份:2023
- 资助金额:
$ 49.48万 - 项目类别:
Standard Grant
CAREER: Temporal Network Analysis: Models, Algorithms, and Applications
职业:时态网络分析:模型、算法和应用
- 批准号:
2236789 - 财政年份:2023
- 资助金额:
$ 49.48万 - 项目类别:
Continuing Grant