Theory of Composite Fermions

复合费米子理论

基本信息

  • 批准号:
    9986806
  • 负责人:
  • 金额:
    $ 27.6万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2000
  • 资助国家:
    美国
  • 起止时间:
    2000-02-01 至 2003-07-31
  • 项目状态:
    已结题

项目摘要

This grant supports work on quantum Hall effect. Nearly a decade ago, this PI proposed the notion of composite fermions, objects which are complexes consisting of an electron and an even number of flux quanta, formed when electrons in a layer are subjected to intense magnetic fields. A gas of independent composite fermions is the conceptual foundation underneath a physical understanding of fractional quantum Hall effect as well as the Fermi sea in the vicinity of a half-filled landau level. To incorporate effects of interaction between the composite fermions this PI has developed a wavefunction based approach, which has been successful in providing insight into several experiments. In the current grant period, he plans to build further. In particular, he plans to explore the conditions where the independent composite fermion picture breaks down and instabilities set in. He wants to study the composite fermion counterpart of instability towards ferromagnetism in low-density electrons (without any magnetic field), which was first discussed by Bloch seventy years ago.%%%When a layer of electrons is subjected to high magnetic fields, their motion becomes strongly correlated and leads to integer and fractional quantum Hall effects. Some ten years ago, this PI proposed a simple, insightful framework, called composite fermions, to describe the properties associated with fractional quantum Hall effect. Over the past ten years, this conceptual device has been immensely successful in understanding experimental results and has helped develop insight and intuition. The current grant proceeds with a new twist: while the past studies have been limited to free composite fermions, when does this view break down, what happens when the breakdown occurs and what happens afterwards?***
该基金支持量子霍尔效应的工作。 大约十年前,这个PI提出了复合费米子的概念,复合费米子是由一个电子和偶数个通量量子组成的复合物,当一个层中的电子受到强磁场的作用时形成。 独立复合费米子气体是物理理解分数量子霍尔效应以及半满朗道能级附近的费米海的概念基础。 为了将复合费米子之间的相互作用的影响,PI开发了一种基于波函数的方法,该方法已成功地提供了几个实验的见解。 在目前的赠款期间,他计划进一步建设。 特别是,他计划探索独立复合费米子图像崩溃和不稳定性发生的条件。 他想研究低密度电子(没有任何磁场)中铁磁性不稳定性的复合费米子对应物,这是布洛赫70年前首次讨论的。当一层电子受到强磁场的作用时,它们的运动变得强烈相关,并导致整数和分数量子霍尔效应。 大约十年前,这个PI提出了一个简单而有见地的框架,称为复合费米子,来描述与分数量子霍尔效应相关的性质。 在过去的十年里,这个概念装置在理解实验结果方面取得了巨大的成功,并帮助发展了洞察力和直觉。 目前的资助进行了一个新的转折:虽然过去的研究仅限于自由复合费米子,但这种观点何时会崩溃,崩溃发生时会发生什么以及之后会发生什么?

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jainendra Jain其他文献

In a Twist, Composite Fermions Form and Flow without a Magnetic Field
在扭曲中,复合费米子在没有磁场的情况下形成和流动
  • DOI:
    10.1103/physics.16.163
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Jainendra Jain
  • 通讯作者:
    Jainendra Jain
Synthesis, characterization, and pharmacological evaluation of new GABA analogs as potent anticonvulsant agents
  • DOI:
    10.1007/s00044-011-9743-9
  • 发表时间:
    2011-07-19
  • 期刊:
  • 影响因子:
    3.100
  • 作者:
    Naveen Yadav;Manav Malhotra;Vikramdeep Monga;Sagun Sharma;Jainendra Jain;Abdul Samad;Aakash Deep
  • 通讯作者:
    Aakash Deep

Jainendra Jain的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jainendra Jain', 18)}}的其他基金

Exact model for extremely correlated electrons in a magnetic field
磁场中高度相关电子的精确模型
  • 批准号:
    2037990
  • 财政年份:
    2022
  • 资助金额:
    $ 27.6万
  • 项目类别:
    Standard Grant
Joint Conference on Electronic Properties of 2D Systems & Modulated Semiconductor Systems
二维系统电子特性联席会议
  • 批准号:
    1743045
  • 财政年份:
    2017
  • 资助金额:
    $ 27.6万
  • 项目类别:
    Standard Grant
Correlated Solid and Liquid States in High Magnetic Fields
高磁场中相关的固态和液态
  • 批准号:
    1401636
  • 财政年份:
    2015
  • 资助金额:
    $ 27.6万
  • 项目类别:
    Continuing Grant
Theory of Novel Excitations in the Fractional Quantum Hall Effect
分数量子霍尔效应中的新激发理论
  • 批准号:
    1005536
  • 财政年份:
    2010
  • 资助金额:
    $ 27.6万
  • 项目类别:
    Continuing Grant
Theory of Composite Fermions
复合费米子理论
  • 批准号:
    0240458
  • 财政年份:
    2003
  • 资助金额:
    $ 27.6万
  • 项目类别:
    Continuing Grant
Theory of the Fractional Quantum Hall Effect
分数量子霍尔效应理论
  • 批准号:
    9996157
  • 财政年份:
    1998
  • 资助金额:
    $ 27.6万
  • 项目类别:
    Continuing Grant
Theory of the Fractional Quantum Hall Effect
分数量子霍尔效应理论
  • 批准号:
    9615005
  • 财政年份:
    1997
  • 资助金额:
    $ 27.6万
  • 项目类别:
    Continuing Grant
Theory of the Fractional Quantum Hall Effect
分数量子霍尔效应理论
  • 批准号:
    9318739
  • 财政年份:
    1994
  • 资助金额:
    $ 27.6万
  • 项目类别:
    Continuing Grant
Theory of the Fractional Quantum Hall Effect
分数量子霍尔效应理论
  • 批准号:
    9020637
  • 财政年份:
    1991
  • 资助金额:
    $ 27.6万
  • 项目类别:
    Continuing Grant

相似海外基金

EAGER: Creating a Composite EL Nino Record from the Lowland Neotropics
EAGER:创造低地新热带区综合厄尔尼诺记录
  • 批准号:
    2417794
  • 财政年份:
    2024
  • 资助金额:
    $ 27.6万
  • 项目类别:
    Standard Grant
CAREER: Multiscale Reduced Order Modeling and Design to Elucidate the Microstructure-Property-Performance Relationship of Hybrid Composite Materials
职业:通过多尺度降阶建模和设计来阐明混合复合材料的微观结构-性能-性能关系
  • 批准号:
    2341000
  • 财政年份:
    2024
  • 资助金额:
    $ 27.6万
  • 项目类别:
    Standard Grant
Development of limonite-biochar composite for the improvement of the anaerobic digestion of livestock manure and fertilizer quality of digestate
褐铁矿-生物炭复合材料的开发用于改善牲畜粪便的厌氧消化和消化物的肥料品质
  • 批准号:
    24K09153
  • 财政年份:
    2024
  • 资助金额:
    $ 27.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
In situ quantitative monitoring of water environment chemistry and corrosion evolution of steel matrix around typical composite inclusions under different strains
不同应变下典型复合夹杂物周围钢基体水环境化学和腐蚀演化的原位定量监测
  • 批准号:
    24K17166
  • 财政年份:
    2024
  • 资助金额:
    $ 27.6万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
ERI: Self-Recognizing Composite Structural Elements (SR-CSEs): Multifunctional, Sustainable and Reliable
ERI:自我识别复合结构元件 (SR-CSE):多功能、可持续且可靠
  • 批准号:
    2347554
  • 财政年份:
    2024
  • 资助金额:
    $ 27.6万
  • 项目类别:
    Standard Grant
REU Site: Smart Polymer Composite Materials and Structures
REU 网站:智能聚合物复合材料和结构
  • 批准号:
    2349680
  • 财政年份:
    2024
  • 资助金额:
    $ 27.6万
  • 项目类别:
    Continuing Grant
微量元素Nano-Compositeを応用した象牙質再石灰化・再生を革新する組織接着性材の創成
使用微量元素纳米复合材料创建组织粘附材料,彻底改变牙本质再矿化和再生
  • 批准号:
    24K12951
  • 财政年份:
    2024
  • 资助金额:
    $ 27.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Enviro: a novel colouring solution to unlock sustainable lightweight advanced composite materials
Enviro:一种新颖的着色解决方案,可释放可持续的轻质先进复合材料
  • 批准号:
    10093708
  • 财政年份:
    2024
  • 资助金额:
    $ 27.6万
  • 项目类别:
    Collaborative R&D
Controllable Cluster Fusion of the Main-Group-Element(E)-Centered Gold(I) Polyhedral Clusters and Creation of Composite Optical Functions
主族元素(E)中心金(I)多面体团簇的可控团簇聚变及复合光学函数的创建
  • 批准号:
    24K08443
  • 财政年份:
    2024
  • 资助金额:
    $ 27.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Bioinspired Ceramifiable Fire-Retardant Composite Coatings
仿生陶瓷阻燃复合涂料
  • 批准号:
    DP240102628
  • 财政年份:
    2024
  • 资助金额:
    $ 27.6万
  • 项目类别:
    Discovery Projects
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了