Theory of the Fractional Quantum Hall Effect

分数量子霍尔效应理论

基本信息

  • 批准号:
    9615005
  • 负责人:
  • 金额:
    $ 15.4万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    1997
  • 资助国家:
    美国
  • 起止时间:
    1997-02-01 至 1999-02-18
  • 项目状态:
    已结题

项目摘要

9615005 Jain The present grant is to support the extension of earlier work by the PI on composite fermion description of the fractional quantum Hall effect. More specifically, the PI has devised a formalism to calculate the wave functions of the ground as well as the excited states for large systems using Monte Carlo techniques. The possibility of calculations in thermodynamic limit promises a quantitative understanding of various outstanding experimental issues. In particular the grant plans to calculate the energy gaps and collective mode dispersions at general fractions, degree of polarization including the Zeeman energy, transitions between the fractional quantum Hall states and a Wigner crystal and finally the response of a mesoscopic quantum dot to applied high magnetic fields. %%% The subject of fractional quantum Hall effect has been an active area in recent years, in significant part due to this PI's discovery of the composite fermion description. A serious limitation so far has been that the theoretical calculations are limited to system of smaller sizes, as opposed to the experiments which are generally for larger sizes. A significant development recently by the PI suggests possible removal of this limitation. This grant is to support calculations of various experimental observable in the large system limit. ***
9615005目前的拨款是为了支持PI关于复合费米子描述分数量子霍尔效应的早期工作的扩展。更具体地说,PI设计了一种形式,利用蒙特卡罗技术计算大系统的基态和激发态的波函数。热力学极限计算的可能性保证了对各种悬而未决的实验问题的定量理解。特别是,这项拨款计划计算一般分数下的能隙和集体模色散,包括塞曼能量在内的偏振度,分数量子霍尔态和维格纳晶体之间的跃迁,以及介观量子点对外加强磁场的响应。分数量子霍尔效应的研究近年来一直是一个活跃的领域,这在很大程度上是因为这个PI发现了复合费米子的描述。到目前为止,一个严重的限制是理论计算仅限于较小尺寸的系统,而不是通常针对较大尺寸的实验。PI最近的一项重大发展表明,这一限制可能会被取消。这项拨款是为了支持在大系统极限下各种实验观察值的计算。***

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jainendra Jain其他文献

In a Twist, Composite Fermions Form and Flow without a Magnetic Field
在扭曲中,复合费米子在没有磁场的情况下形成和流动
  • DOI:
    10.1103/physics.16.163
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Jainendra Jain
  • 通讯作者:
    Jainendra Jain
Synthesis, characterization, and pharmacological evaluation of new GABA analogs as potent anticonvulsant agents
  • DOI:
    10.1007/s00044-011-9743-9
  • 发表时间:
    2011-07-19
  • 期刊:
  • 影响因子:
    3.100
  • 作者:
    Naveen Yadav;Manav Malhotra;Vikramdeep Monga;Sagun Sharma;Jainendra Jain;Abdul Samad;Aakash Deep
  • 通讯作者:
    Aakash Deep

Jainendra Jain的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jainendra Jain', 18)}}的其他基金

Exact model for extremely correlated electrons in a magnetic field
磁场中高度相关电子的精确模型
  • 批准号:
    2037990
  • 财政年份:
    2022
  • 资助金额:
    $ 15.4万
  • 项目类别:
    Standard Grant
Joint Conference on Electronic Properties of 2D Systems & Modulated Semiconductor Systems
二维系统电子特性联席会议
  • 批准号:
    1743045
  • 财政年份:
    2017
  • 资助金额:
    $ 15.4万
  • 项目类别:
    Standard Grant
Correlated Solid and Liquid States in High Magnetic Fields
高磁场中相关的固态和液态
  • 批准号:
    1401636
  • 财政年份:
    2015
  • 资助金额:
    $ 15.4万
  • 项目类别:
    Continuing Grant
Theory of Novel Excitations in the Fractional Quantum Hall Effect
分数量子霍尔效应中的新激发理论
  • 批准号:
    1005536
  • 财政年份:
    2010
  • 资助金额:
    $ 15.4万
  • 项目类别:
    Continuing Grant
Theory of Composite Fermions
复合费米子理论
  • 批准号:
    0240458
  • 财政年份:
    2003
  • 资助金额:
    $ 15.4万
  • 项目类别:
    Continuing Grant
Theory of Composite Fermions
复合费米子理论
  • 批准号:
    9986806
  • 财政年份:
    2000
  • 资助金额:
    $ 15.4万
  • 项目类别:
    Continuing Grant
Theory of the Fractional Quantum Hall Effect
分数量子霍尔效应理论
  • 批准号:
    9996157
  • 财政年份:
    1998
  • 资助金额:
    $ 15.4万
  • 项目类别:
    Continuing Grant
Theory of the Fractional Quantum Hall Effect
分数量子霍尔效应理论
  • 批准号:
    9318739
  • 财政年份:
    1994
  • 资助金额:
    $ 15.4万
  • 项目类别:
    Continuing Grant
Theory of the Fractional Quantum Hall Effect
分数量子霍尔效应理论
  • 批准号:
    9020637
  • 财政年份:
    1991
  • 资助金额:
    $ 15.4万
  • 项目类别:
    Continuing Grant

相似国自然基金

英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
  • 批准号:
    12126512
  • 批准年份:
    2021
  • 资助金额:
    12.0 万元
  • 项目类别:
    数学天元基金项目

相似海外基金

Phase Competition and Domain Textures in the Fractional Quantum Hall Effect
分数量子霍尔效应中的相位竞争和域纹理
  • 批准号:
    2103965
  • 财政年份:
    2021
  • 资助金额:
    $ 15.4万
  • 项目类别:
    Continuing Grant
EAGER-QAC-QSA: COLLABORATIVE RESEARCH: QUANTUM SIMULATION OF EXCITATIONS, BRAIDING, AND THE NONEQUILIBRIUM DYNAMICS OF FRACTIONAL QUANTUM HALL STATES
EAGER-QAC-QSA:合作研究:激发、编织和分数量子霍尔态的非平衡动力学的量子模拟
  • 批准号:
    2037996
  • 财政年份:
    2020
  • 资助金额:
    $ 15.4万
  • 项目类别:
    Standard Grant
EAGER-QAC-QSA: COLLABORATIVE RESEARCH: QUANTUM SIMULATION OF EXCITATIONS, BRAIDING, AND THE NONEQUILIBRIUM DYNAMICS OF FRACTIONAL QUANTUM HALL STATES
EAGER-QAC-QSA:合作研究:激发、编织和分数量子霍尔态的非平衡动力学的量子模拟
  • 批准号:
    2038028
  • 财政年份:
    2020
  • 资助金额:
    $ 15.4万
  • 项目类别:
    Standard Grant
Investigating the fractional quantum Hall effect using diagrammatic techniques.
使用图表技术研究分数量子霍尔效应。
  • 批准号:
    2444312
  • 财政年份:
    2020
  • 资助金额:
    $ 15.4万
  • 项目类别:
    Studentship
Dynamics of Fractional Quantum Hall States
分数量子霍尔态的动力​​学
  • 批准号:
    2285891
  • 财政年份:
    2019
  • 资助金额:
    $ 15.4万
  • 项目类别:
    Studentship
EAGER: BRAIDING: Demonstration of Topological Qubits Using Non-Abelian Anyons in the Fractional Quantum Hall Effect
EAGER:编织:在分数量子霍尔效应中使用非阿贝尔任意子演示拓扑量子位
  • 批准号:
    1836908
  • 财政年份:
    2018
  • 资助金额:
    $ 15.4万
  • 项目类别:
    Standard Grant
Microscopy of Bosonic Fractional Quantum Hall States in Optical Lattices
光学晶格中玻色子分数量子霍尔态的显微镜观察
  • 批准号:
    1806604
  • 财政年份:
    2018
  • 资助金额:
    $ 15.4万
  • 项目类别:
    Continuing Grant
Creation of bosonic fractional quantum Hall states in exciton-polaritons
在激子极化子中创建玻色子分数量子霍尔态
  • 批准号:
    17H04851
  • 财政年份:
    2017
  • 资助金额:
    $ 15.4万
  • 项目类别:
    Grant-in-Aid for Young Scientists (A)
Collision experiment of fractional quantum Hall quasiparticles
分数量子霍尔准粒子的碰撞实验
  • 批准号:
    16H06009
  • 财政年份:
    2016
  • 资助金额:
    $ 15.4万
  • 项目类别:
    Grant-in-Aid for Young Scientists (A)
Perturbative analysis from the integrable limits on the dynamics of fractional excitations in quantum spin liquids
量子自旋液体分数激发动力学可积极限的微扰分析
  • 批准号:
    16H04026
  • 财政年份:
    2016
  • 资助金额:
    $ 15.4万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了