Theory of Novel Excitations in the Fractional Quantum Hall Effect
分数量子霍尔效应中的新激发理论
基本信息
- 批准号:1005536
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-10-01 至 2014-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
TECHNICAL SUMMARY This award supports theoretical research on the excitations of the fractional quantum Hall effect state. While definite progress has been made toward clarifying the physics of some of the excitations of the fractional quantum Hall effect state, many important issues remain unexplored. Employing a combination of numerical tools, such as exact diagonalization and quantum Monte Carlo techniques, and analytical approaches, including effective Chern Simons field theory, bosonization, and conformal field theory, the PI aims to address the following questions:(1) Does the fractional quantum Hall effect spectrum contain new magneto-roton collective modes at higher energies? If so, how will they manifest in inelastic light scattering or optical absorption experiments?(2) Do composite fermions generically form pairs in the lowest Landau level, and if so, how can they be observed?(3) How does an externally injected electron couple into high energy excitations of the fractional quantum Hall state? How many higher Landau-like levels of composite fermions are real? What is the nature of the neutral and charged excitations in higher electronic Landau levels? How does the spin degree of freedom alter the nature of excitations? (4) How are the fractional quantum Hall effect excitations affected by an anisotropy in the interaction?(5) What is the microscopic description of the edge excitations of more complex states, such as 2/5, and how does it compare to the predictions of the effective theory?The PI will work closely with experimental groups. The graduate students supported by this grant will receive a broad training ranging from massively parallel numerical computations to semiconductor physics to quantum field theory. The PI and his student will also devote a portion of their time in conveying the excitement of various physical phenomena and concepts in two dimensions to school students at all levels, with hands-on activities including various possible crystal structures in two dimensions, two dimensional models of gravity, and interference of waves in two dimensions. These will be combined to form an educational module entitled "Fun with Physics in Flatland", to be incorporated into existing educational and outreach programs at Penn State. NON-TECHNICAL SUMMARY This award supports theoretical study of collective quantum states of matter known as the fractional quantum Hall effect. These emerge when electrons confined to two dimensions are exposed to a strong magnetic field. This study will focus on excited states and their energies which are largely unexplored. Experimental efforts are beginning to investigate these excited states in hitherto inaccessible regimes. In this context, the PI's research is poised to make timely contributions to the interpretation of experiments. Employing a combination of numerical and analytical tools, the PI aims to investigate specific theoretical questions; some are related to predictions of new electronic states of matter in quantum Hall systems that might form the basis for a new high performance computer that exploits the manipulation of quantum mechanical states for its operation.During the course of this research, the PI will work closely with experimental groups. Graduate students supported by this award will receive a broad training ranging from computation to advanced analytical theoretical methods. The PI and his student will also devote a portion of their time in conveying the excitement of various physical phenomena and concepts in two dimensions to school students at all levels, with hands-on activities including various possible crystal structures in two dimensions, two dimensional models of gravity, and interference of waves in two dimensions. These will be combined to form an educational module entitled "Fun with Physics in Flatland", to be incorporated into existing educational and outreach programs at Penn State.
该奖项支持分数量子霍尔效应态激发的理论研究。虽然在澄清分数量子霍尔效应态的某些激发的物理学方面已经取得了明确的进展,但许多重要的问题仍未得到探索。采用精确对角化和量子蒙特卡罗技术等数值工具和分析方法,包括有效的Chern Simons场理论、玻色子化和共形场理论,PI旨在解决以下问题:(1)分数量子霍尔效应谱是否包含更高能量的新磁-转子集体模式?如果是这样,它们将如何在非弹性光散射或光吸收实验中表现出来?(2)复合费米子一般在最低朗道能级形成对吗?如果是,如何观测到它们?(3)外部注入的电子如何耦合到分数量子霍尔态的高能激发中?复合费米子有多少更高的类朗道能级是真实存在的?在较高电子朗道能级中,中性和带电激励的性质是什么?自旋自由度如何改变激发态的性质?(4)相互作用中的各向异性如何影响分数量子霍尔效应激发?(5)更复杂状态(如2/5)的边缘激发的微观描述是什么?它与有效理论的预测相比如何?PI将与实验组密切合作。该基金资助的研究生将接受从大规模并行数值计算到半导体物理到量子场论的广泛培训。PI和他的学生还将花一部分时间向各级学生传达二维中各种物理现象和概念的兴奋,包括各种可能的二维晶体结构,二维重力模型,以及二维波的干涉。这些课程将被整合成一个名为“Flatland with Physics in Fun”的教育模块,并被纳入宾夕法尼亚州立大学现有的教育和推广项目中。该奖项支持被称为分数量子霍尔效应的物质集体量子态的理论研究。当局限于二维空间的电子暴露在强磁场中时,就会出现这种现象。这项研究将集中在激发态及其能量上,这在很大程度上是未知的。实验工作已经开始在迄今为止无法进入的体制中研究这些激发态。在这种背景下,PI的研究准备对实验的解释做出及时的贡献。采用数值和分析工具的组合,PI旨在调查具体的理论问题;其中一些与量子霍尔系统中物质的新电子状态的预测有关,这可能成为利用量子力学状态操纵其运行的新型高性能计算机的基础。在这项研究的过程中,PI将与实验组密切合作。该奖项支持的研究生将接受从计算到高级分析理论方法的广泛培训。PI和他的学生还将花一部分时间向各级学生传达二维中各种物理现象和概念的兴奋,包括各种可能的二维晶体结构,二维重力模型,以及二维波的干涉。这些课程将被整合成一个名为“Flatland with Physics in Fun”的教育模块,并被纳入宾夕法尼亚州立大学现有的教育和推广项目中。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jainendra Jain其他文献
In a Twist, Composite Fermions Form and Flow without a Magnetic Field
在扭曲中,复合费米子在没有磁场的情况下形成和流动
- DOI:
10.1103/physics.16.163 - 发表时间:
2023 - 期刊:
- 影响因子:1.6
- 作者:
Jainendra Jain - 通讯作者:
Jainendra Jain
Synthesis, characterization, and pharmacological evaluation of new GABA analogs as potent anticonvulsant agents
- DOI:
10.1007/s00044-011-9743-9 - 发表时间:
2011-07-19 - 期刊:
- 影响因子:3.100
- 作者:
Naveen Yadav;Manav Malhotra;Vikramdeep Monga;Sagun Sharma;Jainendra Jain;Abdul Samad;Aakash Deep - 通讯作者:
Aakash Deep
Jainendra Jain的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jainendra Jain', 18)}}的其他基金
Exact model for extremely correlated electrons in a magnetic field
磁场中高度相关电子的精确模型
- 批准号:
2037990 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Joint Conference on Electronic Properties of 2D Systems & Modulated Semiconductor Systems
二维系统电子特性联席会议
- 批准号:
1743045 - 财政年份:2017
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Correlated Solid and Liquid States in High Magnetic Fields
高磁场中相关的固态和液态
- 批准号:
1401636 - 财政年份:2015
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Theory of the Fractional Quantum Hall Effect
分数量子霍尔效应理论
- 批准号:
9996157 - 财政年份:1998
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Theory of the Fractional Quantum Hall Effect
分数量子霍尔效应理论
- 批准号:
9615005 - 财政年份:1997
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Theory of the Fractional Quantum Hall Effect
分数量子霍尔效应理论
- 批准号:
9318739 - 财政年份:1994
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Theory of the Fractional Quantum Hall Effect
分数量子霍尔效应理论
- 批准号:
9020637 - 财政年份:1991
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
相似国自然基金
Novel-miR-1134调控LHCGR的表达介导拟
穴青蟹卵巢发育的机制研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
novel-miR75靶向OPR2,CA2和STK基因调控人参真菌胁迫响应的分子机制研究
- 批准号:82304677
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
海南广藿香Novel17-GSO1响应p-HBA调控连作障碍的分子机制
- 批准号:82304658
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
白术多糖通过novel-mir2双靶向TRADD/MLKL缓解免疫抑制雏鹅的胸腺程序性坏死
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
novel_circ_001042/miR-298-5p/Capn1轴调节线粒体能量代谢在先天性肛门直肠畸形发生中的作用机制研究
- 批准号:
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
novel-miR-59靶向HMGAs介导儿童早衰症细胞衰老的作用及机制研究
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
novel_circ_008138/rno-miR-374-3p/SFRP4调控Wnt信号通路参与先天性肛门直肠畸形发生的分子机制研究
- 批准号:82070530
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
miRNA-novel-272通过靶向半乳糖凝集素3调控牙鲆肠道上皮细胞炎症反应的机制研究
- 批准号:32002421
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
m6A修饰介导的lncRNA WEE2-AS1转录后novel-pri-miRNA剪切机制在胶质瘤恶性进展中的作用研究
- 批准号:
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
miRNA/novel_167靶向抑制Dmrt1的表达在红鳍东方鲀性别分化过程中的功能研究
- 批准号:31902347
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Novel ground states and excitations in quantum spin liquids
量子自旋液体中的新基态和激发
- 批准号:
2888447 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Studentship
Collaborative Research: Probing quasiparticle excitations in TMDC Moiré superlattices for revealing and understanding novel two-dimensional correlated phases
合作研究:探测 TMDC 莫尔超晶格中的准粒子激发,以揭示和理解新颖的二维相关相
- 批准号:
2103842 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Collaborative Research: Probing quasiparticle excitations in TMDC Moiré superlattices for revealing and understanding novel two-dimensional correlated phases
合作研究:探测 TMDC 莫尔超晶格中的准粒子激发,以揭示和理解新颖的二维相关相
- 批准号:
2104036 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Collaborative Research: Probing quasiparticle excitations in TMDC Moiré superlattices for revealing and understanding novel two-dimensional correlated phases
合作研究:探测 TMDC 莫尔超晶格中的准粒子激发,以揭示和理解新颖的二维相关相
- 批准号:
2103731 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
CAREER: Controlling unconventional interactions between 2D excitons and novel quantum excitations
职业:控制二维激子和新型量子激发之间的非常规相互作用
- 批准号:
1945660 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Novel topological excitations and quantum liquid phases in magnets
磁体中的新型拓扑激发和量子液相
- 批准号:
17K14352 - 财政年份:2017
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Optical Excitations and Applications in Novel Organic Macromolecular Aggregates
新型有机高分子聚集体的光激发及其应用
- 批准号:
1709005 - 财政年份:2017
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Inelastic X-ray scattering studies of a novel electronic state induced by the interferences among multiple low-energy excitations
多次低能激发干扰引起的新型电子态的非弹性X射线散射研究
- 批准号:
22540345 - 财政年份:2010
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Optical Excitations and Applications in Novel Organic Macromolecular Aggregates
新型有机高分子聚集体的光激发及其应用
- 批准号:
0802968 - 财政年份:2008
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Novel magnetic excitations in complex electronic materials
复杂电子材料中的新型磁激发
- 批准号:
EP/F020694/1 - 财政年份:2007
- 资助金额:
$ 30万 - 项目类别:
Research Grant