REU: Matrix Analysis and Applications
REU:矩阵分析和应用
基本信息
- 批准号:9987803
- 负责人:
- 金额:$ 15.12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2000
- 资助国家:美国
- 起止时间:2000-04-01 至 2004-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This REU project, "Matrix Analysis and Applications," will bring nine highly motivated and capable undergraduate students from across the nation to the Williamsburg campus of the College of William and Mary during each of the next three summers. The students will spend eight weeks experiencing mathematical research first hand, under the mentorship of faculty members of William and Mary's Mathematics department, widely recognized as a national research center in matrix and operator theory. Students will work in teams of two to three, each team supervised by one or two research mentors, on projects that are related to matrix theory and that are chosen by the faculty for their mathematical accessibility and appropriateness for well-prepared undergraduates. The program will include seminars on mathematical topics and applications of matrix theory to other disciplines, and trips to nearby research institutions that employ mathematicians. Informal discussions and interchange of ideas among the students will be encouraged, and communication of mathematics to peers will be strongly emphasized. By the end of the summer project, each student team will have made several oral presentations and will present a final written report on its work. In the past, about half of these reports have been the basis for refereed scholarly publication by students and advisors, and that will continue to be a goal of the project. In the past, the vast majority of our REU students have gone to mathematical sciences graduate school, and that, too, will continue to be a project goal.
这个名为“矩阵分析与应用”的REU项目将在接下来的三个暑假中,每年将来自全国各地的9名积极进取、有能力的本科生带到威廉与玛丽学院的威廉斯堡校区。学生们将在威廉和玛丽数学系的教职员工的指导下,用八周的时间亲身体验数学研究。数学系被广泛认为是矩阵和算子理论的全国研究中心。学生们将分成两到三个小组,每个小组由一到两名研究导师指导,研究项目与矩阵理论有关,并由教师根据其数学可及性和对准备充分的本科生的适宜性而选择。该计划将包括关于数学主题和矩阵理论在其他学科的应用的研讨会,以及前往附近雇用数学家的研究机构的旅行。将鼓励学生之间的非正式讨论和思想交流,并将大力强调与同龄人的数学交流。到暑期项目结束时,每个学生小组将做几次口头报告,并提交一份关于其工作的最终书面报告。在过去,这些报告中大约有一半是学生和导师发表学术评论的基础,这将继续是该项目的一个目标。过去,我们REU的绝大多数学生都上过数学科学研究生院,这也将继续是项目的目标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Lutzer其他文献
Domain representability of certain function spaces
- DOI:
10.1016/j.topol.2009.03.013 - 发表时间:
2009-06-15 - 期刊:
- 影响因子:
- 作者:
Harold Bennett;David Lutzer - 通讯作者:
David Lutzer
Branch space representations of lines
- DOI:
10.1016/j.topol.2003.12.020 - 发表时间:
2005-06-01 - 期刊:
- 影响因子:
- 作者:
Will Funk;David Lutzer - 通讯作者:
David Lutzer
Cleavability in Ordered Spaces
- DOI:
10.1023/a:1010682504379 - 发表时间:
2001-03-01 - 期刊:
- 影响因子:0.300
- 作者:
Harold Bennett;Robert Byerly;David Lutzer - 通讯作者:
David Lutzer
Subcompactness and domain representability in GO-spaces on sets of real numbers
- DOI:
10.1016/j.topol.2008.11.012 - 发表时间:
2009-02-15 - 期刊:
- 影响因子:
- 作者:
Harold Bennett;David Lutzer - 通讯作者:
David Lutzer
Lines, Trees, and Branch Spaces
- DOI:
10.1023/a:1022837930051 - 发表时间:
2002-12-01 - 期刊:
- 影响因子:0.300
- 作者:
Harold Bennett;David Lutzer;Mary Ellen Rudin - 通讯作者:
Mary Ellen Rudin
David Lutzer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Lutzer', 18)}}的其他基金
Mathematical Sciences: Matrix Analysis and Applications
数学科学:矩阵分析与应用
- 批准号:
9619577 - 财政年份:1997
- 资助金额:
$ 15.12万 - 项目类别:
Continuing Grant
Computer Literacy For Middle School Mathematics Teachers
中学数学教师的计算机素养
- 批准号:
8161006 - 财政年份:1981
- 资助金额:
$ 15.12万 - 项目类别:
Standard Grant
Abstract Spaces, Function Spaces and Ordered Spaces
抽象空间、函数空间和有序空间
- 批准号:
8001617 - 财政年份:1980
- 资助金额:
$ 15.12万 - 项目类别:
Standard Grant
Topology, Borel Structure and Certain Axiomatic Problems in Abstract Spaces
抽象空间中的拓扑、Borel结构和某些公理问题
- 批准号:
7684283 - 财政年份:1977
- 资助金额:
$ 15.12万 - 项目类别:
Standard Grant
相似国自然基金
基于Matrix2000加速器的个性小数据在线挖掘
- 批准号:2020JJ4669
- 批准年份:2020
- 资助金额:0.0 万元
- 项目类别:省市级项目
多模强激光场R-MATRIX-FLOQUET理论
- 批准号:19574020
- 批准年份:1995
- 资助金额:7.5 万元
- 项目类别:面上项目
相似海外基金
MRI: Track 1 Acquisition of a Matrix-Assisted Laser Desorption/Ionization Time-of-flight Mass Spectrometer for Analysis of Macromolecules
MRI:轨道 1 获取用于分析大分子的基质辅助激光解吸/电离飞行时间质谱仪
- 批准号:
2320090 - 财政年份:2023
- 资助金额:
$ 15.12万 - 项目类别:
Standard Grant
Elucidation of early bone tissue architecture by in vivo volumetric image analysis-from both sides of cells and bone matrix
通过体内体积图像分析从细胞和骨基质两侧阐明早期骨组织结构
- 批准号:
23H03114 - 财政年份:2023
- 资助金额:
$ 15.12万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Matrix Analysis for the 21st Century
21 世纪的矩阵分析
- 批准号:
2319010 - 财政年份:2023
- 资助金额:
$ 15.12万 - 项目类别:
Standard Grant
Why do volcanoes collapse? Analysis of matrix facies of debris avalanche deposits and prediction of future collapses
火山为什么会塌陷?
- 批准号:
22H01306 - 财政年份:2022
- 资助金额:
$ 15.12万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Fabrication of Ultra-high Specific Strength Ceramic-Matrix Composites by Combination of Three-Dimensional Modeling and Numerical Analysis
三维建模与数值分析相结合制备超高比强度陶瓷基复合材料
- 批准号:
22J20100 - 财政年份:2022
- 资助金额:
$ 15.12万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Combinatorial matrix theory and spectral analysis
组合矩阵理论和谱分析
- 批准号:
RGPIN-2022-05137 - 财政年份:2022
- 资助金额:
$ 15.12万 - 项目类别:
Discovery Grants Program - Individual
Operator theory and matrix analysis methods in quantum information theory
量子信息论中的算子理论和矩阵分析方法
- 批准号:
RGPIN-2019-05276 - 财政年份:2022
- 资助金额:
$ 15.12万 - 项目类别:
Discovery Grants Program - Individual
Analysis of vasculature matrix in tumor microenvironment
肿瘤微环境中血管基质的分析
- 批准号:
22K19453 - 财政年份:2022
- 资助金额:
$ 15.12万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
New surface-modified nanoparticles as matrices to enhance mass spectrometric analysis of substance of abuse by matrix assisted laser desorption ionization
新型表面改性纳米粒子作为基质,通过基质辅助激光解吸电离增强滥用物质的质谱分析
- 批准号:
RGPIN-2020-04332 - 财政年份:2022
- 资助金额:
$ 15.12万 - 项目类别:
Discovery Grants Program - Individual
Functional analysis of extracellular matrix laminin affecting macrophage phenotype
细胞外基质层粘连蛋白影响巨噬细胞表型的功能分析
- 批准号:
22H03259 - 财政年份:2022
- 资助金额:
$ 15.12万 - 项目类别:
Grant-in-Aid for Scientific Research (B)