Matrix Analysis for the 21st Century
21 世纪的矩阵分析
基本信息
- 批准号:2319010
- 负责人:
- 金额:$ 13.32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-02-15 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In the design of systems such as aircraft or industrial facilities, it is essential to know that the design is optimal and safe; oftentimes such stability is encoded in terms of the "positivity" of a certain matrix equation. More generally, matrix inequalities are of great importance in engineering and other applications, since the stability of a system can often be expressed in terms of a complex set of matrix inequalities. The mathematical discipline of matrix analysis can be used to simplify or better understand questions about such inequalities. This project will continue the development of the systematic manipulation of matrix inequalities and study related mathematical questions in several complex variables, many of which are of independent theoretical interest. This project will also explore potential applications outside mathematics, including applications to engineering and economics, such as a search for unstable equilibria in models of trade restrictions, which may inform trade policy. A matrix inequality establishes the positivity of the eigenvalues of an expression involving some matrices. For example, matrix inequalities arise in the stability analysis of systems of ordinary differential equations where a matrix solution to the Lyapunov condition is needed. This project will contribute to the mathematical foundations of systematic algebraic and analytic manipulation for matrix inequalities. Recent development of the subject has concerned the study of free noncommutative functions, the natural class of functions used to perform such manipulations in a dimension-free way. A qualitative understanding of the free noncommutative functional calculus is important for applications; it is a tool to work around the fact that matrix calculations, such as inversion and multiplication, are computationally expensive and sometimes unstable. Much of the study applies techniques developed in systems and control engineering, such as realization theory and sums of squares, whose mathematical theory is currently undergoing a rapid development. This project is also concerned with the boundary behavior of analytic functions, which has played an important role in the manipulation of matrix inequalities and moment theory since the classical work of Nevanlinna and Loewner. The research has several potential applications to free probability, random matrix theory, several complex variables, and real algebraic geometry.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在飞机或工业设施等系统的设计中,必须知道设计是最优的和安全的;通常这种稳定性是根据某个矩阵方程的“正性”来编码的。更一般地,矩阵不等式在工程和其他应用中非常重要,因为系统的稳定性通常可以用一组复杂的矩阵不等式来表示。矩阵分析的数学学科可以用来简化或更好地理解有关此类不等式的问题。该项目将继续发展矩阵不等式的系统操作,并研究若干复变量中的相关数学问题,其中许多问题具有独立的理论意义。该项目还将探索数学以外的潜在应用,包括工程和经济学应用,例如在贸易限制模型中寻找不稳定均衡,这可能会为贸易政策提供信息。一个矩阵不等式建立了涉及一些矩阵的表达式的特征值的正性。例如,矩阵不等式出现在常微分方程系统的稳定性分析中,其中需要李雅普诺夫条件的矩阵解。这个项目将有助于系统的代数和矩阵不等式的分析操作的数学基础。这一课题的最新发展涉及自由非交换函数的研究,这是一种自然的函数类,用于以无量纲的方式进行这种操作。对自由非交换泛函微积分的定性理解对于应用程序很重要;它是一种工具,可以解决矩阵计算(如求逆和乘法)计算昂贵且有时不稳定的问题。许多研究应用了系统和控制工程中开发的技术,如实现理论和平方和,其数学理论目前正在迅速发展。该项目还关注解析函数的边界行为,自Nevanlinna和Loewner的经典工作以来,它在矩阵不等式和矩量理论的操作中发挥了重要作用。该研究有几个潜在的应用自由概率,随机矩阵理论,几个复杂的变量,和真实的代数geometrics. This奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Geometric dilations and operator annuli
几何膨胀和算子环
- DOI:10.1016/j.jfa.2023.110035
- 发表时间:2023
- 期刊:
- 影响因子:1.7
- 作者:McCullough, Scott;Pascoe, James E.
- 通讯作者:Pascoe, James E.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
James Pascoe其他文献
James Pascoe的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('James Pascoe', 18)}}的其他基金
Matrix Analysis for the 21st Century
21 世纪的矩阵分析
- 批准号:
1953963 - 财政年份:2020
- 资助金额:
$ 13.32万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
- 批准号:41601604
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
- 批准号:31100958
- 批准年份:2011
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
- 批准号:30470153
- 批准年份:2004
- 资助金额:22.0 万元
- 项目类别:面上项目
相似海外基金
Gender Representation of Working Professionals in Japanese TV Commercials: A Temporal Analysis from the End of the 20th Century to the Early 21st Century
日本电视广告中职业人士的性别代表性:20世纪末至21世纪初的时间分析
- 批准号:
24K21029 - 财政年份:2024
- 资助金额:
$ 13.32万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
An analysis of 21st century history of European integration: crises and reorganization
21世纪欧洲一体化史分析:危机与重组
- 批准号:
23H00785 - 财政年份:2023
- 资助金额:
$ 13.32万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
A stylistic analysis of 21st-century present-tense fiction
21世纪现在时小说的文体分析
- 批准号:
21K00573 - 财政年份:2021
- 资助金额:
$ 13.32万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Systematic Analysis of 21st Chromosome Ortholog Overexpression in C. elegans
线虫 21 号染色体直向同源物过度表达的系统分析
- 批准号:
10488058 - 财政年份:2021
- 资助金额:
$ 13.32万 - 项目类别:
Systematic Analysis of 21st Chromosome Ortholog Overexpression in C. elegans
线虫 21 号染色体直向同源物过度表达的系统分析
- 批准号:
10315961 - 财政年份:2021
- 资助金额:
$ 13.32万 - 项目类别:
Matrix Analysis for the 21st Century
21 世纪的矩阵分析
- 批准号:
1953963 - 财政年份:2020
- 资助金额:
$ 13.32万 - 项目类别:
Standard Grant
Quasi-experimental analysis of corporate tax and corporate behavior: Organizational forms in Meiji and in 21st century(Fostering Joint International Research)
企业税与企业行为的准实验分析:明治和21世纪的组织形式(促进国际联合研究)
- 批准号:
15KK0088 - 财政年份:2016
- 资助金额:
$ 13.32万 - 项目类别:
Fund for the Promotion of Joint International Research (Fostering Joint International Research)
SBIR Phase II: Linguistic Analysis of Web Content for 21st Century Inquiry Learning
SBIR 第二阶段:21 世纪探究性学习的网络内容语言分析
- 批准号:
1456186 - 财政年份:2015
- 资助金额:
$ 13.32万 - 项目类别:
Standard Grant
Comparative analysis on application of ICT to promote 21st century skills in education in Asia
应用ICT促进亚洲21世纪教育技能的比较分析
- 批准号:
15K01017 - 财政年份:2015
- 资助金额:
$ 13.32万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
SBIR Phase I: Linguistic Analysis of Web Content for 21st Century Inquiry Learning
SBIR 第一阶段:21 世纪探究性学习的网络内容语言分析
- 批准号:
1315554 - 财政年份:2013
- 资助金额:
$ 13.32万 - 项目类别:
Standard Grant














{{item.name}}会员




