Approximation Methods for Inference, Learning and Decision-Making

推理、学习和决策的近似方法

基本信息

  • 批准号:
    9988642
  • 负责人:
  • 金额:
    $ 37.98万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2000
  • 资助国家:
    美国
  • 起止时间:
    2000-04-15 至 2004-03-31
  • 项目状态:
    已结题

项目摘要

Graphical models have become a unifying focus for interdisciplinary research in the areas of probabilistic inference, learning and decision-making. Referred to in various settings as Bayesian networks, Markov random fields, influence diagrams, decision networks, or structured stochastic systems, the graphical model formalism is general enough to encompass a wide variety of classical probabilistic systems in AI and engineering, while providing a firm mathematical foundation on which to design new systems. This research will focus on approximation algorithms for large-scale problems to provide a significantly deeper empirical and theoretical understanding of graphical models. The approach will be based on probability propagation, variational and Monte Carlo methods for inference, learning and decision-making, the aim being to understand the kinds of graphical models for which these methods are appropriate. The PI will extend the scope of approximation methodology to include hybrid graphical models and decision networks, and to provide theoretical convergence analyses and error analyses for them. He will also test out the new methods empirically on standard benchmarks and in a variety of application areas. The ultimate goal of the research is to establish probabilistic graphical models as a full-fledged engineering discipline capable of providing robust, systematic solutions to large-scale problems in inference, learning and decision-making. A successful approximation methodology for graphical models would allow an engineer to design a graphical solution to meet performance specifications for a given problem, where these specifications are given in terms of time / accuracy tradeoffs and estimation / approximation tradeoffs. Even partial progress towards these goals will have wide impact in fields where large-scale probabilistic systems are used, including information retrieval, medical diagnosis, biological sequence analysis, source and error-control coding, speech recognition, and machine vision
图形模型已经成为概率推理、学习和决策领域跨学科研究的统一焦点。 图模型形式主义在各种环境中被称为贝叶斯网络、马尔可夫随机场、影响图、决策网络或结构化随机系统,它足够通用,可以涵盖人工智能和工程中的各种经典概率系统,同时提供了坚实的数学基础。设计新系统的基础。 本研究将专注于大规模问题的近似算法,以提供对图形模型的更深入的经验和理论理解。 该方法将基于概率传播,变分和蒙特卡洛方法进行推理,学习和决策,目的是了解这些方法适用的图形模型。 PI将扩展近似方法的范围,包括混合图形模型和决策网络,并为它们提供理论收敛分析和误差分析。 他还将在标准基准测试和各种应用领域中对新方法进行经验测试。 该研究的最终目标是建立概率图模型,作为一个成熟的工程学科,能够为推理,学习和决策中的大规模问题提供强大,系统的解决方案。 图形模型的成功近似方法将允许工程师设计图形解决方案以满足给定问题的性能规范,其中这些规范在时间/精度权衡和估计/近似权衡方面给出。 即使是朝着这些目标取得的部分进展,也将在使用大规模概率系统的领域产生广泛的影响,包括信息检索、医学诊断、生物序列分析、源代码和差错控制编码、语音识别和机器视觉

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Jordan其他文献

Age Impacts Risk of Mixed Chimerism Following RIC HCT for Non-SCID Inborn Errors of Immunity.
年龄影响针对非 SCID 先天性免疫缺陷的 RIC HCT 后混合嵌合现象的风险。
  • DOI:
    10.1016/j.jtct.2023.09.024
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Taylor Fitch;Adam Lane;John C McDonnell;J. Bleesing;Michael Jordan;Ashish Kumar;P. Khandelwal;Ruby Khoury;R. Marsh;S. Chandra
  • 通讯作者:
    S. Chandra
Lymphopenia in Patients with Hemophagocytic Lymphohistiocytosis: Are B Cells Suppressed in These Patients?
  • DOI:
    10.1016/j.bbmt.2013.12.270
  • 发表时间:
    2014-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Sharat Chandra;Alexandra Filipovich;Michael Jordan
  • 通讯作者:
    Michael Jordan
strongDifferent monitoring patterns in treated and untreated patients with Fabry disease: Analysis of a United States claims database/strong
经过治疗和未经治疗的Fabry疾病患者的强度监测模式:美国的分析声称数据库/强
  • DOI:
    10.1016/j.ymgme.2023.107947
  • 发表时间:
    2024-02-01
  • 期刊:
  • 影响因子:
    3.500
  • 作者:
    Irina Maksimova;Alexandra Dumitriu;Ana Crespo;Gandarvaka Miles;Andrea Ocampo;Queeny Ip;Michael Jordan;Natalia Petruski-Ivleva;Roberto Araujo
  • 通讯作者:
    Roberto Araujo
<strong>Different monitoring patterns in treated and untreated patients with Fabry disease: Analysis of a United States claims database</strong>
  • DOI:
    10.1016/j.ymgme.2023.107947
  • 发表时间:
    2024-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Irina Maksimova;Alexandra Dumitriu;Ana Crespo;Gandarvaka Miles;Andrea Ocampo;Queeny Ip;Michael Jordan;Natalia Petruski-Ivleva;Roberto Araujo
  • 通讯作者:
    Roberto Araujo
Septo-optic dysplasia associated with congenital persistent fetal vasculature, retinal detachment, and gastroschisis.
与先天性持续性胎儿脉管系统、视网膜脱离和腹裂相关的中隔视神经发育不良。

Michael Jordan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Jordan', 18)}}的其他基金

RI: Medium: Collaborative Research: Algorithmic High-Dimensional Statistics: Statistical Optimality, Computational Barriers, and High-Dimensional Corrections
RI:中:协作研究:算法高维统计:统计最优性、计算障碍和高维校正
  • 批准号:
    1901252
  • 财政年份:
    2019
  • 资助金额:
    $ 37.98万
  • 项目类别:
    Standard Grant
Flexible Machine Learning
灵活的机器学习
  • 批准号:
    0412995
  • 财政年份:
    2004
  • 资助金额:
    $ 37.98万
  • 项目类别:
    Continuing Grant
Acquisition of an Integrated Computational and Psychophysical Laboratory
收购综合计算和心理物理实验室
  • 批准号:
    9601828
  • 财政年份:
    1996
  • 资助金额:
    $ 37.98万
  • 项目类别:
    Standard Grant
Post Doctoral: Probabilistic Models for Hierarchical Neural Networks
博士后:分层神经网络的概率模型
  • 批准号:
    9404932
  • 财政年份:
    1994
  • 资助金额:
    $ 37.98万
  • 项目类别:
    Standard Grant
MATHOPOLIS - Mathematics Theme Exhibitry in the New Science Center of Connecticut
MATHOPOLIS - 康涅狄格州新科学中心数学主题展览
  • 批准号:
    9453779
  • 财政年份:
    1994
  • 资助金额:
    $ 37.98万
  • 项目类别:
    Continuing Grant
Representation and Exploitation of Uncertainty in Exploration and Control
勘探与控制中不确定性的表示和利用
  • 批准号:
    9309300
  • 财政年份:
    1993
  • 资助金额:
    $ 37.98万
  • 项目类别:
    Standard Grant
State of The Environment: Understanding Connecticut's Environment Through Interactive Map
环境状况:通过交互式地图了解康涅狄格州的环境
  • 批准号:
    9253362
  • 财政年份:
    1992
  • 资助金额:
    $ 37.98万
  • 项目类别:
    Standard Grant
PYI: The Acquisition of Speech
PYI:言语习得
  • 批准号:
    9158548
  • 财政年份:
    1991
  • 资助金额:
    $ 37.98万
  • 项目类别:
    Continuing grant
A Modular Connectionist Architecture for Control
用于控制的模块化联结主义架构
  • 批准号:
    9013991
  • 财政年份:
    1990
  • 资助金额:
    $ 37.98万
  • 项目类别:
    Continuing grant

相似国自然基金

Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Spectral embedding methods and subsequent inference tasks on dynamic multiplex graphs
动态多路复用图上的谱嵌入方法和后续推理任务
  • 批准号:
    EP/Y002113/1
  • 财政年份:
    2024
  • 资助金额:
    $ 37.98万
  • 项目类别:
    Research Grant
CAREER: Statistical Inference in Observational Studies -- Theory, Methods, and Beyond
职业:观察研究中的统计推断——理论、方法及其他
  • 批准号:
    2338760
  • 财政年份:
    2024
  • 资助金额:
    $ 37.98万
  • 项目类别:
    Continuing Grant
MPhil/PhD Statistics (Assessing inequality in the Criminal Justice System using novel causal inference methods and Bayesian spatial models)
硕士/博士统计学(使用新颖的因果推理方法和贝叶斯空间模型评估刑事司法系统中的不平等)
  • 批准号:
    2905812
  • 财政年份:
    2023
  • 资助金额:
    $ 37.98万
  • 项目类别:
    Studentship
Partitioning-Based Learning Methods for Treatment Effect Estimation and Inference
基于分区的治疗效果估计和推理学习方法
  • 批准号:
    2241575
  • 财政年份:
    2023
  • 资助金额:
    $ 37.98万
  • 项目类别:
    Standard Grant
The contribution of air pollution to racial and ethnic disparities in Alzheimer’s disease and related dementias: An application of causal inference methods
空气污染对阿尔茨海默病和相关痴呆症的种族和民族差异的影响:因果推理方法的应用
  • 批准号:
    10642607
  • 财政年份:
    2023
  • 资助金额:
    $ 37.98万
  • 项目类别:
Leveraging Causal Inference and Machine Learning Methods to Advance Evidence-Based Maternal Care and Improve Newborn Health Outcomes
利用因果推理和机器学习方法推进循证孕产妇护理并改善新生儿健康结果
  • 批准号:
    10604856
  • 财政年份:
    2023
  • 资助金额:
    $ 37.98万
  • 项目类别:
Developing variable selection methods and post-selection inference under double-descent phenomena
开发双下降现象下的变量选择方法和选择后推理
  • 批准号:
    23K18471
  • 财政年份:
    2023
  • 资助金额:
    $ 37.98万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Collaborative Research: New Theory and Methods for High-Dimensional Multi-Task and Transfer Learning Inference
合作研究:高维多任务和迁移学习推理的新理论和新方法
  • 批准号:
    2324490
  • 财政年份:
    2023
  • 资助金额:
    $ 37.98万
  • 项目类别:
    Continuing Grant
Collaborative Research: New Theory and Methods for High-Dimensional Multi-Task and Transfer Learning Inference
合作研究:高维多任务和迁移学习推理的新理论和新方法
  • 批准号:
    2324489
  • 财政年份:
    2023
  • 资助金额:
    $ 37.98万
  • 项目类别:
    Continuing Grant
"Improving Understanding Of Weight Stigma With Causal Inference Methods And General Population Survey Data".
“利用因果推理方法和一般人口调查数据提高对体重耻辱的理解”。
  • 批准号:
    ES/X000486/1
  • 财政年份:
    2023
  • 资助金额:
    $ 37.98万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了