Flexible Machine Learning
灵活的机器学习
基本信息
- 批准号:0412995
- 负责人:
- 金额:$ 21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-08-15 至 2007-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The next generation of machine learning systems will need to be substantially more flexible than current systems. Machine learning systems will need to be able to grow new structure as needed, to take into account repeated substructures that arise from relational knowledge, to deal with abstraction hierarchies, and to cope more gracefully with heterogeneous data. This project addresses these issues. It aims at problems both in the Bayesian approach to machine learning (specifically, graphical models) and the frequentist approach to machine learning (specifically, kernel machines). In the graphical model setting, the PI describes a new approach to structure learning based on a flexible prior known as the Chinese restaurant process (CRP)." It explores generalization of the CRP referred to as the hierarchical Dirichlet process" that makes it possible to take into account repeated or partially-repeated sub-structures. It also presents explores a generalization of the CRP that referred to as the nested Chinese restaurant process" for learning abstraction hierarchies.In the area of kernel machines, the PI builds on his previous NSF-sponsored work to consider methods for combining heterogeneous kernels based on tools from convex optimization, in particular semidefinite programming. He will use these ideas to define novel feature selection methods, and to design new algorithms for the semidefinite programming approach that are the analog of the sequential minimal optimization" (SMO) algorithm for quadratic programming that have permitted the rise to prominence of the support vector machine. The project will focus on driving applications in the areas of information retrieval, bioinformatics, bug-finding in computer programs, and sensor networks.
下一代机器学习系统需要比当前系统更灵活。机器学习系统需要能够根据需要增长新的结构,考虑从关系知识中产生的重复子结构,处理抽象层次结构,并更优雅地科普异构数据。该项目解决了这些问题。它旨在解决机器学习的贝叶斯方法(特别是图形模型)和机器学习的频率论方法(特别是内核机器)中的问题。在图形模型设置中,PI描述了一种新的结构学习方法,该方法基于灵活的先验知识,称为中国餐馆过程(CRP)。“它探索了CRP的泛化,称为分层狄利克雷过程”,这使得考虑重复或部分重复的子结构成为可能。它还提出了探索的CRP,被称为嵌套的中国餐馆的过程”学习抽象层次的泛化。在内核机器的区域,PI建立在他以前的NSF赞助的工作,考虑基于凸优化,特别是半定规划的工具,结合异构内核的方法。他将使用这些想法来定义新的特征选择方法,并为半定规划方法设计新的算法,这些算法类似于二次规划的序列最小优化(SMO)算法,这些算法允许支持向量机的崛起。该项目将集中于推动信息检索,生物信息学,计算机程序中的错误发现和传感器网络等领域的应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Jordan其他文献
Age Impacts Risk of Mixed Chimerism Following RIC HCT for Non-SCID Inborn Errors of Immunity.
年龄影响针对非 SCID 先天性免疫缺陷的 RIC HCT 后混合嵌合现象的风险。
- DOI:
10.1016/j.jtct.2023.09.024 - 发表时间:
2023 - 期刊:
- 影响因子:3.2
- 作者:
Taylor Fitch;Adam Lane;John C McDonnell;J. Bleesing;Michael Jordan;Ashish Kumar;P. Khandelwal;Ruby Khoury;R. Marsh;S. Chandra - 通讯作者:
S. Chandra
Lymphopenia in Patients with Hemophagocytic Lymphohistiocytosis: Are B Cells Suppressed in These Patients?
- DOI:
10.1016/j.bbmt.2013.12.270 - 发表时间:
2014-02-01 - 期刊:
- 影响因子:
- 作者:
Sharat Chandra;Alexandra Filipovich;Michael Jordan - 通讯作者:
Michael Jordan
strongDifferent monitoring patterns in treated and untreated patients with Fabry disease: Analysis of a United States claims database/strong
经过治疗和未经治疗的Fabry疾病患者的强度监测模式:美国的分析声称数据库/强
- DOI:
10.1016/j.ymgme.2023.107947 - 发表时间:
2024-02-01 - 期刊:
- 影响因子:3.500
- 作者:
Irina Maksimova;Alexandra Dumitriu;Ana Crespo;Gandarvaka Miles;Andrea Ocampo;Queeny Ip;Michael Jordan;Natalia Petruski-Ivleva;Roberto Araujo - 通讯作者:
Roberto Araujo
<strong>Different monitoring patterns in treated and untreated patients with Fabry disease: Analysis of a United States claims database</strong>
- DOI:
10.1016/j.ymgme.2023.107947 - 发表时间:
2024-02-01 - 期刊:
- 影响因子:
- 作者:
Irina Maksimova;Alexandra Dumitriu;Ana Crespo;Gandarvaka Miles;Andrea Ocampo;Queeny Ip;Michael Jordan;Natalia Petruski-Ivleva;Roberto Araujo - 通讯作者:
Roberto Araujo
Septo-optic dysplasia associated with congenital persistent fetal vasculature, retinal detachment, and gastroschisis.
与先天性持续性胎儿脉管系统、视网膜脱离和腹裂相关的中隔视神经发育不良。
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Michael Jordan;S. Montezuma - 通讯作者:
S. Montezuma
Michael Jordan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Jordan', 18)}}的其他基金
RI: Medium: Collaborative Research: Algorithmic High-Dimensional Statistics: Statistical Optimality, Computational Barriers, and High-Dimensional Corrections
RI:中:协作研究:算法高维统计:统计最优性、计算障碍和高维校正
- 批准号:
1901252 - 财政年份:2019
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Approximation Methods for Inference, Learning and Decision-Making
推理、学习和决策的近似方法
- 批准号:
9988642 - 财政年份:2000
- 资助金额:
$ 21万 - 项目类别:
Continuing Grant
Acquisition of an Integrated Computational and Psychophysical Laboratory
收购综合计算和心理物理实验室
- 批准号:
9601828 - 财政年份:1996
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Post Doctoral: Probabilistic Models for Hierarchical Neural Networks
博士后:分层神经网络的概率模型
- 批准号:
9404932 - 财政年份:1994
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
MATHOPOLIS - Mathematics Theme Exhibitry in the New Science Center of Connecticut
MATHOPOLIS - 康涅狄格州新科学中心数学主题展览
- 批准号:
9453779 - 财政年份:1994
- 资助金额:
$ 21万 - 项目类别:
Continuing Grant
Representation and Exploitation of Uncertainty in Exploration and Control
勘探与控制中不确定性的表示和利用
- 批准号:
9309300 - 财政年份:1993
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
State of The Environment: Understanding Connecticut's Environment Through Interactive Map
环境状况:通过交互式地图了解康涅狄格州的环境
- 批准号:
9253362 - 财政年份:1992
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
A Modular Connectionist Architecture for Control
用于控制的模块化联结主义架构
- 批准号:
9013991 - 财政年份:1990
- 资助金额:
$ 21万 - 项目类别:
Continuing grant
相似国自然基金
Understanding structural evolution of galaxies with machine learning
- 批准号:
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
相似海外基金
Building a Flexible Framework Towards Autonomous Networking Using Machine Learning Techniques
使用机器学习技术构建灵活的自主网络框架
- 批准号:
RGPIN-2020-06582 - 财政年份:2022
- 资助金额:
$ 21万 - 项目类别:
Discovery Grants Program - Individual
BRITE Pivot: Machine Learning Accelerated Optimization of Flash Lamp Processed Thin-films for Flexible Optoelectronic Applications
BRITE Pivot:机器学习加速优化用于柔性光电应用的闪光灯加工薄膜
- 批准号:
2135203 - 财政年份:2022
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Building a Flexible Framework Towards Autonomous Networking Using Machine Learning Techniques
使用机器学习技术构建灵活的自主网络框架
- 批准号:
RGPIN-2020-06582 - 财政年份:2021
- 资助金额:
$ 21万 - 项目类别:
Discovery Grants Program - Individual
GOALI/Collaborative Research: Curating Complex Data Sets for Machine Learning Applied to Flexible Assembly Design and Optimization
GOALI/协作研究:为应用于灵活装配设计和优化的机器学习管理复杂的数据集
- 批准号:
2030093 - 财政年份:2021
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
GOALI/Collaborative Research: Curating Complex Data Sets for Machine Learning Applied to Flexible Assembly Design and Optimization
GOALI/协作研究:为应用于灵活装配设计和优化的机器学习管理复杂的数据集
- 批准号:
2029905 - 财政年份:2021
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Fast and flexible Bayesian phylogenetics via modern machine learning
通过现代机器学习快速灵活的贝叶斯系统发育学
- 批准号:
10654594 - 财政年份:2021
- 资助金额:
$ 21万 - 项目类别:
Fast and flexible Bayesian phylogenetics via modern machine learning
通过现代机器学习快速灵活的贝叶斯系统发育学
- 批准号:
10266670 - 财政年份:2021
- 资助金额:
$ 21万 - 项目类别:
Fast and flexible Bayesian phylogenetics via modern machine learning
通过现代机器学习快速灵活的贝叶斯系统发育学
- 批准号:
10434141 - 财政年份:2021
- 资助金额:
$ 21万 - 项目类别:
Fast and flexible Bayesian phylogenetics via modern machine learning
通过现代机器学习快速灵活的贝叶斯系统发育学
- 批准号:
10593362 - 财政年份:2021
- 资助金额:
$ 21万 - 项目类别:
Machine Learning for Tomorrow: Efficient, Flexible, Robust and Automated
面向未来的机器学习:高效、灵活、稳健和自动化
- 批准号:
EP/T005637/1 - 财政年份:2020
- 资助金额:
$ 21万 - 项目类别:
Research Grant














{{item.name}}会员




